Math, asked by fahimabrarcox162, 1 day ago

f(x + 3) = f(x + 1) + 4x + 12 and f(0) = 2, then what is f(300)?​

Answers

Answered by user0888
10

Composite function g(x)=x-3

\;

f(x)=f(x-2)+4(x-3)+12

\;

f(x)-f(x-2)=4x-12+12

\;

f(x)-f(x-2)=4x

\;

Composite function h(x)=2x

\;

f(2x)-f(2x-2)=8x

\;\;

Now, recall the properties of the telescoping series. The sequences alternate, thus leaving the difference of the first and last term.

\;

The property of,

\cdots\longrightarrow\boxed{\displaystyle\sum^{n}_{k=1}(a_{k+1}-a_{k})=a_{n+1}-a_{1}}

\;

\displaystyle\sum^{n}_{x=1}\{f(2x)-f(2x-2)\}=\sum^{n}_{x=1}8x

\;

\displaystyle\sum^{n}_{x=1}\{f(2x)-f(2x-2)\}=8\times\dfrac{n(n+1)}{2}

\;

\displaystyle\sum^{n}_{x=1}\{f(2x)-f(2x-2)\}=4n(n+1)

\;

\displaystyle\sum^{n}_{x=1}\{f(2x)-f(2x-2)\}=4n^{2}+4n

\;

2n=300

\;

n=150

\;

\small\text{$\displaystyle\sum^{150}_{x=1}\{f(2x)-f(2x-2)\}=4\cdot 150^{2}+4\cdot 150$}

\;

f(300)-f(0)=90000+600

\;

f(300)=90600+2

\;

\therefore f(300)=90602

Similar questions