Math, asked by kp163452, 9 months ago

F(x)=4sinx-2x-xcosx/2+cosx

Answers

Answered by darabutterfly242
0

Answer:

f given by f(x)=4sinx−2x−xcosx2+cosxis increasing decreasing, x∈(0,2π)

Step-by-step explanation:f(x)=  

2+cosx

4sinx−2x−xcosx

​  

 

=  

2+cosx

4sinx

​  

−  

2+cosx

2x+xcosx

​  

 

=  

2+cosx

4sinx

​  

−  

(2+cosx)

x(2+cosx)

​  

 

=  

2+cosx

4sinx

​  

−x

Now let's find out f  

 

(x)

f  

 

(x)=  

(2+cosx)  

2

 

4cosx(2+cosx)+sinx(4sinx)

​  

−1

=  

(2+cosx)  

2

 

8cosx+4(cos  

2

x+sin  

2

x)

​  

−1

=  

(2+cosx)  

2

 

8cosx+4−(2+cosx)  

2

 

​  

 

=  

(2+cosx)  

2

 

8cosx+4−4−4cosx−cos  

2

x

​  

 

=  

(2+cosx)  

2

 

cosx(4−cosx)

​  

 

Now,(2+cosx)  

2

>0∀xϵR

Similarly,4−cosx>0∀xϵR

as cosxϵ[−1,1]

⇒4−cosxϵ[3,5]>0

∴ the function f(x) will be increasing if f  

 

(x)>0⇒cosx>0 and decreasing if f  

 

(x)<0⇒cosx<0

(i) Increasing  

f  

 

(x)>0

⇒cosx>0

∴xϵ(0,  

4

π

​  

)∪(  

4

​  

,2π)

(ii) Decreasing

f  

 

(x)<0

⇒cosx<0

∴xϵ(  

4

π

​  

,π)∪(π,  

2

​  

)

Similar questions