Math, asked by kanupriyakoranga96, 1 month ago

f(x) = 5ax +3b if>1 differentiable
[x²+5 if x<1
at x =1 find the values ?
a and b​

Answers

Answered by mathdude500
7

Appropriate Question

If

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\:f(x) = \begin{cases} &amp;\sf{5ax + 3b, \: when \: x \geqslant 1} \\ &amp;\sf{ {x}^{2}  + 5, \: when \: x &lt; 1} \end{cases}\end{gathered}\end{gathered}

is differentiable at x = 1, find the values of a and b.

\large\underline{\sf{Solution-}}

Given that,

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\:f(x) = \begin{cases} &amp;\sf{5ax + 3b, \: when \: x \geqslant 1} \\ &amp;\sf{ {x}^{2}  + 5, \: when \: x &lt; 1} \end{cases}\end{gathered}\end{gathered}

Now, It is given that f(x) is differentiable at x = 1. It implies, f(x) is continuous at x = 1 also.

[ Because every differentiable function is always continuous. ]

We know,

A function f (x) is said to be continuous at x = a, iff

\red{\rm :\longmapsto\:\displaystyle\lim_{x \to a^-}f(x) = \displaystyle\lim_{x \to a^ + }f(x) = f(a)}

Since, it is given that f(x) is continuous at x = 1

\red{\rm :\longmapsto\:\displaystyle\lim_{x \to 1^-}f(x)= f(1)}

\red{\rm :\longmapsto\:\displaystyle\lim_{x \to 1^-}( {x}^{2} + 5) = 5a + 3b}

\boxed{ \rm{ Put \:  x = 1-h,   \:  \: \: as \:  \:  x \to 1,  \:  \: so \:  \:  h \to 0}}

\red{\rm :\longmapsto\:\displaystyle\lim_{h \to \: 0}( {(1 - h)}^{2} + 5) = 5a + 3b}

\red{\rm :\longmapsto \: 1 + 5 = 5a + 3b}

\red{\rm :\longmapsto \:5a + 3b = 6 -  -  -  - (1)}

Now, It is given that f(x) is differentiable at x = 1.

We know,

A function f(x) is said to be differentiable at x = a, iff

\green{\rm :\longmapsto\:\displaystyle\lim_{x \to a^-}\dfrac{f(x) - f(a)}{x - a}  = \:\displaystyle\lim_{x \to a^ + }\dfrac{f(x) - f(a)}{x - a}}

So, as it is given that f(x) is differentiable at x = 1, so

{\rm :\longmapsto\:\displaystyle\lim_{x \to 1^-}\dfrac{f(x) - f(1)}{x - 1}  = \:\displaystyle\lim_{x \to 1^ + }\dfrac{f(x) - f(1)}{x - 1}}

{\rm :\longmapsto\:\displaystyle\lim_{x \to 1^-}\dfrac{ {x}^{2} + 5  - 5a - 3b}{x - 1}  = \:\displaystyle\lim_{x \to 1^ + }\dfrac{5ax + 3b - 5a - 3b}{x - 1}}

{\rm :\longmapsto\:\displaystyle\lim_{x \to 1^-}\dfrac{ {x}^{2} + 5  - 6}{x - 1}  = \:\displaystyle\lim_{x \to 1^ + }\dfrac{5ax - 5a}{x - 1}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \red{\rm :\longmapsto \: \:  (\because \: 5a + 3b = 6 )}

{\rm :\longmapsto\:\displaystyle\lim_{x \to 1^-}\dfrac{ {x}^{2} - 1}{x - 1}  = \:\displaystyle\lim_{x \to 1^ + }\dfrac{5a(x - 1)}{x - 1}}

{\rm :\longmapsto\:\displaystyle\lim_{x \to 1^-}\dfrac{({x} - 1)(x + 1)}{x - 1}  = \:\displaystyle\lim_{x \to 1^ + }5a}

{\rm :\longmapsto\:\displaystyle\lim_{x \to 1^-}(x + 1)  = 5a}

\boxed{ \rm{ Put \:  x = 1-h,   \:  \: \: as \:  \:  x \to 1,  \:  \: so \:  \:  h \to 0}}

{\rm :\longmapsto\:\displaystyle\lim_{h \to 0}(1 - h+ 1)  = 5a}

{\rm :\longmapsto\:\displaystyle\lim_{h \to 0}(2 - h)  = 5a}

\rm :\longmapsto\:2 = 5a

\bf\implies \:a = \dfrac{2}{5}

On substituting the value of a in equation (1), we get

\rm :\longmapsto\:2 + 3b = 6

\rm :\longmapsto\:3b = 6 - 2

\rm :\longmapsto\:3b = 4

\bf\implies \:b = \dfrac{4}{3}

Similar questions