Math, asked by deepbalkar872, 3 months ago

f(x) = (5x³+3x-1) (x - 1) by produet Rule of differentiation ​

Answers

Answered by senboni123456
1

Step-by-step explanation:

We have,

f(x) = (5 {x}^{3}  + 3x - 1)(x - 1)

 \implies \: f^{'}(x) =  (x - 1).\frac{d}{dx} (5 {x}^{3}  + 3x - 1) + (5 {x}^{3}  + 3x - 1). \frac{d}{dx} (x - 1) \\

 \implies \: f^{'}(x) = (x - 1)(15 {x}^{2}  + 3) + (5 {x}^{3}  + 3x  - 1)(1) \\

 \implies \: f^{'}(x) = 15 {x}^{3}   - 15 {x}^{2} +  3x - 3 + 5 {x}^{3}  + 3x  -  1 \\

 \implies \: f^{'}(x) = 20 {x}^{3}  - 15 {x}^{2}  + 6x - 4 \\

Similar questions