Math, asked by ankit426, 1 year ago

f( x)=cos(sinx) derivation

Answers

Answered by llSecreTStarll
10

\underline{ \large \purple{{\huge \bf{\dag\:S \mathscr{olution࿐}}}}}

we need to find derivative of cos x(sin x)

By using product rule for diffrention :

 \underline{ \boxed{ \sf \: f'(x) =  u\frac{dv}{dx} + v\frac{du}{dx}}}

cos x ➔ u

sin x ➔ v

{ \sf \: f'(x) =  cos \: x\frac{d(sin \: x)}{dx} + sin \: x\frac{d(cos \: x)}{dx}} \\  \\ \sf \: f'(x) = cos \: x.cos \: x + sin \: x. ( - sin \: x) \\  \\ \sf \: f'(x) =  {cos}^{2} x -  {sin }^{2} x

━━━━━━━━━━━━━━━━━━━━━━━━━

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀Done࿐

Answered by Anonymous
2

Solution:

dy/dx = d cos (sinx)/dx

=> dy/dx = - sin (sinx) (cosx)

Similar questions