Math, asked by thariquerasheed, 9 months ago

f(x)=|cosx| find f'(3π/4)​

Answers

Answered by mathdude500
0

Answer:

\boxed{\sf \:  \: f'\left(\dfrac{3\pi}{4}\right) =  \dfrac{1}{ \sqrt{2} } \:  \: }  \\  \\

Step-by-step explanation:

Given that,

\sf \: f(x) =  |cosx|  \\  \\

Let first define the function f(x) as

\bf\: f(x) =  |cosx| =  \begin{cases} &\sf{ \:  \:  \: cosx, \:  \: 0 < x < \dfrac{\pi}{2} } \\  \\ &\sf{ - cosx, \:  \: \dfrac{\pi}{2} < x < \dfrac{3\pi}{2}}\\ \\  &\sf{ \:  \:  \: cosx, \:  \: \dfrac{3\pi}{2} < x < 2\pi} \end{cases} \\  \\

So, from this we get

\sf \: f(x)  \: = -  \:  cosx \\  \\

On differentiating both sides w. r. t. x, we get

\sf \:\dfrac{d}{dx}f(x)  \: =\dfrac{d}{dx}( -  \:  cosx) \\  \\

\sf \: f'(x) =  - \dfrac{d}{dx}cosx \\  \\

\sf \: f'(x) =  - ( - sinx) \\  \\

\sf \: f'(x) = sinx\\  \\

Thus,

\sf \: f'\left(\dfrac{3\pi}{4}\right) = sin\left(\dfrac{3\pi}{4}\right) =sin\left(\pi - \dfrac{\pi}{4}\right) = sin\left(\dfrac{\pi}{4}\right) =  \dfrac{1}{ \sqrt{2} }  \\  \\

Hence,

\implies\sf \: f'\left(\dfrac{3\pi}{4}\right) =  \dfrac{1}{ \sqrt{2} }  \\  \\

\rule{190pt}{2pt}

Additional Information

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {x}^{n}  & \sf  {nx}^{n - 1}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x} \end{array}} \\ \end{gathered}

Similar questions