F(x) =[cosx -sinx 0 cosx sinx 0 0 0 1 ]
Answers
Answered by
1
Step-by-step explanation:
F(x)=⎣⎢⎢⎡cosxsinx0amp;−sinxamp;cosxamp;0amp;0amp;0amp;1⎦⎥⎥⎤=cosx(cosx−0)+sinx(sinx−0)=cos2x+sin2x=1F(y)=1F(x).F(y)=F(x+y)
Hence
[F(x)]−1=⎣⎢⎢⎡cosx−sinx0amp;sinxamp;cosxamp;0amp;0amp;0amp;1⎦⎥⎥⎤F(−x)=⎣⎢⎢⎡cos(−x)sin(−x)0amp;−sin(−x)amp;cos(−x)amp;0amp;0
Similar questions