f(x) is a biquadratic polynomial whose leading coefficient is 1 and f(1)=1, f(2)=4, f(3)=9, f(4)=16. Find the biquadratic polynomial
Answers
Answer:
.
Step-by-step explanation:
Step-by-step explanation:
Let f(x)=ax³+bx²+cx+d
f(1)=a+b+c+d=1------------------(1)
f(2)=8a+4b+2c+d=2-------------(2)
f(3)=27a+9b+3c+d=3-----------(3)
f(4)=64a+16b+4c+d=16--------(4)
subtracting (1) from (2),(3) and (4) respectively we have,
7a+3b+c=1-------------------(5)
26a+8b+2c=2----------------(6)
63a+15b+3c=15-------------(7)
multiplying (5) with 2 and subtracting from (6) and multiplying (5) with 3 and subtracting from (7) we have,
12a+2b=0-------(8)
42a+6b=12-----(9)
multiplying (8) with 3 and (9) with 1 and subtracting we have,
36a+6b=0
42a+6b=12
6a=12
or, a =12
then, from (8) we have, 2b=-12a=-12×12=-144
or, b=-144/2=-72
then from (5), c=1-3b-7a=1-3×(-72)-7×12=1+216-84=217-84=133
then from (1), d=1-a-b-c=1-12-(-72)-133=1-12+72-133=73-145=-72
then, f(x)=12x³-72x²+133x-72
∴, f(5)=12×5³-72×5²+133×5-72
=12×125-72×25+665-72
=1500-1800+593
=2093-1800
=293