Math, asked by ronavpuri05, 10 months ago

f(x) is a polynomial of degree 2020. f(k) = \frac{2}{k} , where k = 1, 2, 3, ...., 2021. Find f(2022).

Answers

Answered by MaheswariS
2

\textbf{Given:}

f(k)=\dfrac{2}{k}

\textbf{To find:}

\text{The value of f(2022)}

\textbf{Solution:}

\text{Consider,}

f(k)=\dfrac{2}{k}     ...................(1)

\implies\,f(k+1)=\dfrac{2}{k+1}      .............(2)

\text{Divide (2) by (1), we get}

\dfrac{f(k+1)}{f(k)}=\dfrac{\dfrac{2}{k+1}}{\dfrac{2}{k}}

\dfrac{f(k+1)}{f(k)}=\dfrac{\dfrac{1}{k+1}}{\dfrac{1}{k}}

\dfrac{f(k+1)}{f(k)}=\dfrac{k}{k+1}

\implies\bf\,f(k+1)=f(k)(\dfrac{k}{k+1})

\text{Put k=2021}

f(2022)=f(2021)(\dfrac{2021}{2021+1})

f(2022)=\dfrac{2}{2021}(\dfrac{2021}{2022})

f(2022)=\dfrac{2}{2022}

\bf\,f(2022)=\dfrac{1}{1011}

\therefore\textbf{The value of f(2022) is $\bf\dfrac{1}{1011}$}

Find more:

if 3f(x)-2f(1/x)=x then f'(2)

https://brainly.in/question/13372223

Similar questions