Math, asked by qarar, 1 year ago

F(x)=(Sec2x+tan2x)^2 FIND THE DERIVATIVE SHORTLY

Answers

Answered by GauravGumber
3
f(x)=(sec²x + tan²x)²=(1+tan²x+tan²x)²=(1+2tan²x)²
f'(x)=2*(1+2tan²x)* d(1+2tan ²x)/dx
=2*(1+2tan²x)*(0+2*2tanx*sec²x)
=2(1+2tan²x)(4tanx sec²x)
=8(1+2tan²x)(tanx sec²x)

qarar: PLZ HELP ME
GauravGumber: its okay
GauravGumber: how can i tell it just written above
GauravGumber: if you dont get leave this
kvnmurty: you have forgotten 2 before tan²x in line 3...
kvnmurty: can you modify ?
qarar: bro
GauravGumber: last step, 8sec²θ*sec²θ*tanθ=8sec⁴θ tanθ
GauravGumber: mark answer as brainliest , if you got it
GauravGumber: thanks kvnmurty to correct answer
Answered by kvnmurty
1
f(x) = (Sec 2x + Tan 2x)² 

Derivative:  we apply chain rule.

f '(x) = 2 * (Sec 2x + Tan 2x)²⁻¹ * d (Sec 2x + Tan 2x) / dx
      = 2 (Sec 2x + Tan 2x) * (Sec 2x * Tan 2x  * d(2x)/dx + Sec² 2x * d(2x)/dx )
      = 2 (Sec 2x + Tan 2x) * Sec 2x  ( Tan 2x  * 2 + Sec 2x  * 2)
     = 4 Sec 2x * (Sec 2x + Tan 2x)²
     = 4 Sec 2x (sec² 2x + tan² 2x + 2 sec 2x tan 2x)
    =  4 Sec 2x (2 Sec² 2x + 2 sec 2x  Tan 2x - 1)
    =  8 sec³ 2x + 8 Sec² 2x Tan 2x - 4 sec 2x.

That is the answer.
The answer can be in many forms.. In the book one form may be given. But other forms are also right
======
Rule:

  Derivative of  ( f(x) )ⁿ =   n * ( f(x) )ⁿ⁻¹ * derivative of f(x).
  Derivative of   Tan 2x  =   Sec² 2x  *   derivative of 2x.
 

kvnmurty: :-) hope you can understand the detailed explanation.
kvnmurty: The answer can be in many forms.. In the book one form may be given. But other forms are also right.
qarar: wvbj
qarar: hello bro
Similar questions