f(x) = sin4x + sin3x+ sin2x / cos4x + cos3x+ cos2x
Find the domain of f
Answers
Answer:
all values of x except π /6 + πn/3 & 2π/3 + πn
Step-by-step explanation:
domain of function f(x)sin4x+sin3x+sin2x/cos 4x+cos3x+cos2x
Using sin a + sin b = 2sin((a+b)/2)cos((a-b)/2
sin4x + sin2x = 2sin3xcosx
Using cos a + cosb = 2cos((a+b)/2)cos((a-b)/2
cos4x + cos2x = 2cos3xcosx
putting these values in f(x)
(2sin3xcox + sin3x) / (2cos3xcosx + cos3x)
f(x) = (sin3x(2cosx+1))/(cos3x(2cosx+1))
cancelling 2cosx +1
so 2cosx +1 not equal to 0
= sin3x/cos3x
so cos3x ≠ 0
so cos 3x is real all for real numbers except the values where 3x is equal to π /2 + πn for all integer values of n
x is not equal to π /6 + πn/3
2cosx +1 ≠ 0
cos x ≠ -1/2
x not equal to 2π/3 + πn
domain of function is all values of x except
π /6 + πn/3 & 2π/3 + πn
Answer:
all values of x except π /6 + πn/3 & 2π/3 + πn
Step-by-step explanation:
domain of function
f(x)sin4x+sin3x+sin2x/cos 4x+cos3x+cos2x
Using sin a + sin b = 2sin((a+b)/2)cos((a-b)/2
sin4x + sin2x = 2sin3xcosx
Using cos a + cosb = 2cos((a+b)/2)cos((a-b)/2
cos4x + cos2x = 2cos3xcosx
putting these values in f(x)
(2sin3xcox + sin3x) / (2cos3xcosx + cos3x)
f(x) = (sin3x(2cosx+1))/(cos3x(2cosx+1))
cancelling 2cosx +1
so 2cosx +1 not equal to 0
= sin3x/cos3x
so cos3x ≠ 0
so cos 3x is real all for real numbers except the values where 3x is equal to π /2 + πn for all integer values of n
x is not equal to π /6 + πn/3
2cosx +1 ≠ 0
cos x ≠ -1/2
x not equal to 2π/3 + πn
domain of function is all values of x except
π /6 + πn/3 & 2π/3 + πn