Math, asked by ayu7771, 2 months ago

F(x) = (sinx + cosx)^2, find the minimum value of F(x)
(B) 1
(A) O
(C) 2
(D) 3

Answers

Answered by senboni123456
1

Step-by-step explanation:

We have,

f(x) =  (\sin(x)  +  \cos(x) ) ^{2}

 \implies \: f(x) =  \sin^{2} (x)  +  \cos^{2} (x)  + 2 \sin(x)   \cos(x) \\

 \implies \: f(x) = 1 + 2 \sin(x)   \cos(x) \\

 \implies \: f(x) = 1 + \sin(2x)   \\

We know,

   - 1\leqslant \sin(2x)  \leqslant 1

 \implies   0\leqslant1 +  \sin(2x)  \leqslant 2

So,

f(x) \in [0,2]

So, minimum value of f(x) is 0

Similar questions