Math, asked by biancalazar007, 1 year ago

f(x) = sqrt(x^3+4)
f '(x) = ?

Answers

Answered by DrNykterstein
1

</p><p> \sf \quad f(x) =  \sqrt{ {x}^{3}  + 4}  \\  \\  \\  \sf  \rightarrow \quad f'(x) =  \frac{d}{dx}  \left(  \sqrt{ {x}^{3}  + 4} \right) \\  \\   \sf \rightarrow \quad f'(x)  =  \frac{d( {x}^{3}  + 4 )^{ \frac{1}{2} } }{dx}  \\  \\  \sf \rightarrow \quad f'(x)   = \frac{d( {x}^{3}  + 4 )^{ \frac{1}{2} } }{d( {x}^{3}  + 4)}   \: \cdot  \:  \frac{d( {x}^{3}  + 4)}{dx}  \\  \\ \sf \rightarrow \quad f'(x) =  \frac{1}{2} ( {x}^{3}  + 4)^{ -  \frac{1}{2} }  \:  \cdot \:  \left( \frac{d( {x}^{3}) }{dx}  +  \frac{d(4)}{dx}  \right) \\  \\ \sf \rightarrow \quad f'(x) =  \frac{1}{2 \sqrt{ {x}^{3}  + 4} }  \:  \cdot \: (3 {x}^{2}  + 0) \\  \\ \sf \rightarrow \quad f'(x) =  \frac{3 {x}^{2} }{2 \sqrt{ {x}^{3}  + 4} } </p><p>

Similar questions