Math, asked by ajaykumarak123p8zfuq, 22 days ago

f(x) =
  \frac{1}{ \sqrt{x + 2} }
what is Domain and range​

Answers

Answered by saichavan
15

Answer:

 \sf \green{ To \: Find \: Domain :-}

 \displaystyle \sf \green{f(x) =  \frac{1}{ \sqrt{x + 2} } }

Seperate the function into parts to determine the domain of each part.

 \displaystyle \sf \green{ \frac{1}{ \sqrt{x + 2} } }

 \displaystyle \sf \green{ \sqrt{x + 2} }

 \displaystyle \sf \green{x + 2}

The domain for rational function are all values of x for which denominator is different than 0.

 x \in \mathbb{R} \lbrace-2 \rbrace

  \displaystyle \sf \green{x \geqslant  - 2 }

 \sf \: x \in \mathbb{R}

Find intersection.

 \displaystyle \sf \green{x \in \:   ⟨- 2  \: , +  \infty \rang}

 \sf \therefore \: Domain :- x \in ⟨-2 , +∞ ⟩

  Range :R^{+} -  \lbrace \: 0 \rbrace

Similar questions