Math, asked by suchishah1603, 9 months ago

f(x)=x-1/x+1 prove that f(2x)=3f(x)+1/f(x)+3

Answers

Answered by BrainlyPopularman
11

GIVEN :

  \\ \:  \:  \blacktriangleright \:  \:  { \bold{F(x) =  \dfrac{x - 1}{x + 1} }} \\

TO PROVE :

  \\ \:  \:  \blacktriangleright \:  \:  { \bold{F(2x) =  \dfrac{3F(x) + 1}{F(x) + 3} }} \\

SOLUTION :

• Let's take R.H.S. –

  \\  \:  \:  \:  \:  { \bold{ =  \dfrac{3F(x) + 1}{F(x) + 3}  }} \\

  \\  \:  \:  \:  \:  { \bold{ =  \dfrac{3 \left \{ \dfrac{x - 1}{x +1 } \right \} + 1}{ \left \{ \dfrac{x - 1}{x +1 } \right \} + 3}  }} \\

  \\  \:  \:  \:  \:  { \bold{ = \dfrac{ \left \{ \dfrac{3x - 3}{x +1 } \right \} + 1}{ \left \{ \dfrac{x - 1}{x +1 } \right \} + 3}  }} \\

  \\  \:  \:  \:  \:  { \bold{ = \dfrac{  \dfrac{3x - 3 + x + 1}{ \cancel{x +1 }}}{ \dfrac{x - 1 + 3(x + 1)}{ \cancel{x +1} }}}} \\

  \\  \:  \:  \:  \:  { \bold{ = \dfrac{3x - 3 + x + 1}{x - 1 + 3(x + 1)}}} \\

  \\  \:  \:  \:  \:  { \bold{ = \dfrac{4x -2}{x - 1 +3x+3}}} \\

  \\  \:  \:  \:  \:  { \bold{ = \dfrac{4x -2}{4x + 2}}} \\

  \\  \:  \:  \:  \:  { \bold{ = \dfrac{ \cancel2(2x -1)}{ \cancel2(2x + 1)}}} \\

  \\  \:  \:  \:  \:  { \bold{ =   \dfrac{ 2x -1}{2x + 1}}} \\

  \\  \:  \:  \:  \:  { \bold{ =  F(2x)}} \\

 \\ \:\:\:\:{ \bold{=F(2x)\:\:\:\:\:\: \left \{ \: \because F(2x)= \dfrac{2x-1}{2x+1} \right \}}}\\

  \\  \:  \:  \:  \:  { \bold{ = \:  L.H.S.}} \\

  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  { \bold{ \underbrace{ \overbrace{ Hence \:  \: prove}}}} \\

Answered by MaIeficent
19

Step-by-step explanation:

{\red{\underline{\underline{\bold{Given:-}}}}}

  • f(x) =   \frac{x - 1}{x + 1}  \\

{\blue{\underline{\underline{\bold{To\:Prove:-}}}}}

  • f(2x) =  \frac{3f(x) + 1}{f(x) + 3}  \\

{\green{\underline{\underline{\bold{Solution:-}}}}}

  • Let us prove by simplifying L.H.S and R.H.S separately

R.H.S =

 \frac{3f(x) + 1}{f(x) + 3}

 =  \frac{3[ \frac{x - 1}{x + 1}]  + 1}{ [\frac{x - 1}{x + 1}]+ 3 }  \\  \\   = \frac{ [\frac{3(x - 1)}{x + 1} ] + 1}{ [\frac{x - 1}{x + 1} ]+ 3}  \\  \\  =  \frac{ \frac{3x - 3}{x + 1}  + 1}{[\frac{x - 1}{x + 1} ] + 3}  \\  \\  =  \frac{ \frac{3x - 3 + x + 1}{x + 1} }{ \frac{ x - 1 + 3x + 3}{x + 1} }

 =  \frac{3x - 3 + x + 1}{x - 1 + 3x + 3}  \\  \\  =  \frac{3x + x - 3 + 1}{x + 3x  + 3 - 1}  \\  \\  =  \frac{4x - 2}{4x + 2}  \\  \\  =  \frac{2(2x - 1)}{2(2x + 1)}  \\  \\  =  \frac{2x - 1}{2x + 1}  = f(2x)

L.H.S = R.H.S

Hence,Proved

Similar questions