f(x)=x^1/x maxima and minima
Answers
Answered by
1
Answer:
minima= e^1/e
Step-by-step explanation:
let y=x^1/x
lny=ln(x^1/x)
lny=1/x*lnx
differentiating wrt x
1/y dy/dx=-1/x²*lnx+1/x²
dy/dx= y(1-lnx)/x²
dy/dx=x^1/x(1-lnx)/x²
For maxima or minima, dy/dx=0
(x^1/x)*(1-lnx)/x²=0
Since x^1/x can never be 0,=> 1-lnx=0
lnx=1
x=e
Now, minima= e^1/e
Similar questions