Math, asked by priyotoshbala1234, 8 months ago

f(x) = x^3+x+1 , roots of g(x) are the squares of roots of f(x) , Find g(9)​

Answers

Answered by saounksh
2

ANSWER

  • \red{\boxed{\green{\boxed{\blue{g(9) = 899}}}}}

EXPLAINATION

GIVEN

  • f(x) = x³ + x + 1

  • Roots of g(x) = 0 are squares of roots of f(x) = 0

TO FIND

  • Value of g(9).

CALCULATION

Let  \alpha , \beta , \gamma are root of f(x) = 0. Then  {\alpha}^{2} , {\beta}^{2} , {\gamma}^{2} are the roots of g(x) = 0.

ʀᴇʟᴀᴛɪᴏɴ ʙᴇᴛᴡᴇᴇɴ ʀᴏᴏᴛs ᴀɴᴅ ᴄᴏ-ᴇғғɪᴄɪᴇɴᴛ

For the equation f(x) = 0

1. sᴜᴍ ᴏғ ʀᴏᴏᴛs

 \alpha  +  \beta +   \gamma  =  -  \frac{coeff \: of \:  {x}^{2} }{coeff \: of \:  {x}^{3}}

 ⇒\alpha  +  \beta +   \gamma  = 0........(1)

2. sᴜᴍ ᴏғ ʀᴏᴏᴛs ᴛᴀᴋᴇɴ ᴛᴡᴏ ᴀᴛ ᴀ ᴛɪᴍᴇ

 \alpha  \beta  +  \beta  \gamma +   \gamma  \alpha  =  \frac{coeff \: of \: x}{coeff \: of \: x {}^{3}  }

⇒ \alpha  \beta  +  \beta  \gamma +   \gamma  \alpha  = 1.......(2)

3. ᴘʀᴏᴅᴜᴄᴛ ᴏғ ʀᴏᴏᴛs

 \alpha  \beta  \gamma  =  -  \frac{constant \: term}{coeff \: of \:  {x}^{3} }

 ⇒\alpha  \beta  \gamma  =  - 1......(3)

Now, using these equations, we will calculate i) sum of roots, ii) sum of the roots taken two at a time, iii) product of roots of g(x) = 0.

✰✰✰

☞︎︎︎ (a+b+c)² = a² + b² + c² + 2(ab + bc + ca)

☞︎︎︎ a² + b² + c² = (a+b+c)² - 2(ab + bc + ca)

For the equation g(x) = 0

i) sᴜᴍ ᴏғ ʀᴏᴏᴛs

 { \alpha }^{2}  +  { \beta }^{2}  +  { \gamma }^{2}

 =( \alpha   + \beta  +  \gamma ) {}^{2} -2( \alpha  \beta +   \beta  \gamma +   \gamma  \alpha )

 =  {0}^{2}  - 2 \times 1

 =  - 2

ii) sᴜᴍ ᴏғ ʀᴏᴏᴛs ᴛᴀᴋᴇɴ ᴛᴡᴏ ᴀᴛ ᴀ ᴛɪᴍᴇ

 { \alpha }^{2}  { \beta }^{2}  +  { \beta }^{2}  { \gamma }^{2}  +  { \gamma}^{2}  { \alpha }^{2}

 =  { (\alpha  \beta )}^{2}  +  {( \beta  \gamma )}^{2}  +  {( \gamma  \alpha )}^{2}

 = ( \alpha  \beta  +  \beta  \gamma  +  \gamma  \alpha ) {}^{2}  - 2( \alpha  \beta {}^{2}   \gamma  +  \beta  \gamma  {}^{2}  \alpha  +  \gamma  \alpha  {}^{2}  \beta )

 =  {1}^{2}  - 2 \alpha  \beta  \gamma ( \beta  +  \gamma  +  \alpha )

 = 1 - 2 \times ( - 1) \times 0

 = 1

iii) ᴘʀᴏᴅᴜᴄᴛ ᴏғ ʀᴏᴏᴛs

 { \alpha }^{2}  { \beta }^{2}  { \gamma }^{2}

 =  {( \alpha  \beta  \gamma )}^{2}

 =  {( - 1)}^{2}

 = 1

EXPRESSION OF g(x), VALUE OF g(9)

Now,

g(x) = x³ - (sᴜᴍ ᴏғ ʀᴏᴏᴛs)x² + (sᴜᴍ ᴏғ ʀᴏᴏᴛs ᴛᴀᴋᴇɴ ᴛᴡᴏ ᴀᴛ ᴀ ᴛɪᴍᴇ)x -(ᴘʀᴏᴅᴜᴄᴛ ᴏғ ʀᴏᴏᴛs)

⇒g(x) = x³ - (-2)x² + (1)x - (1)

⇒\boxed{g(x) = x³ + 2x² + x - 1}

⇒g(9) = 9³ + 2.9² + 9 - 1

⇒\boxed{g(9) = 899}

Similar questions