f(x) =x¹⁰⁰⇒f'(1) is equal to
Answers
Answered by
0
Answer:
- f(x)=x100 + x99 + ………….x + 1
- f'(x) = 100x99 + 99x98 +…… + 1
- f'(1) = 100(1)99 + 99(1)98 + …… + 1
[Using Arithmetic Progression, where d = -1, a = 100 & n = 100] = 50 (200 – 99) = 50 (101) = 5050
Answered by
0
Step-by-step explanation:
We need to find the derivative of f(x) at x=1
i.e. f
′
(1)
f(x)=1+x+x
2
+......+x
100
⇒f
′
(x)=(1+x+x
2
+.....+x
100
)
′
⇒f
′
(x)=0+1+2x+.....+100x
99
∴f
′
(x)=1+2x+.....+100x
99
Putting x=1 in f
′
(x)
⇒f
′
(1)=1+2×1+.....+100×1
99
⇒f
′
(1)=1+2+....+100
⇒f
′
(1)=
2
100(100+1)
= 5050
⇒f
′
(1) = 5050
please follow me
Similar questions