Math, asked by log4faisal, 3 months ago

f(x) =x2÷1+x2 find domain and range​

Answers

Answered by shadowsabers03
6

We need to find the domain and range of the function,

\longrightarrow f(x)=\dfrac{x^2}{1+x^2}

Since the denominator is non - zero,

\longrightarrow 1+x^2\neq0

\longrightarrow x^2\neq-1

Here x is not a real number, so there are no domain restrictions. Therefore,

\longrightarrow\underline{\underline{x\in\mathbb{R}}}

This is the domain of the function.

Let x=\tan\theta. Then,

\longrightarrow f(\theta)=\dfrac{\tan^2\theta}{1+\tan^2\theta}

Since \sec^2\theta-\tan^2\theta=1,

\longrightarrow f(\theta)=\dfrac{\tan^2\theta}{\sec^2\theta}

\longrightarrow f(\theta)=\dfrac{\left(\dfrac{\sin^2\theta}{\cos^2\theta}\right)}{\left(\dfrac{1}{\cos^2\theta}\right)}

\longrightarrow f(\theta)=\sin^2\theta

We know the range of \sin\theta is,

\longrightarrow\sin\theta\in[-1,\ 1]

or,

\longrightarrow\sin\theta\in[-1,\ 0]\cup[0,\ 1]

On squaring we get,

\longrightarrow\sin^2\theta\in[0,\ 1]\cup[0,\ 1]

\longrightarrow\sin^2\theta\in[0,\ 1]

or,

\longrightarrow f(\theta)\in[0,\ 1]

Hence the range is,

\longrightarrow\underline{\underline{f(x)\in[0,\ 1]}}

Similar questions