Math, asked by aleeva7665, 8 months ago

F(x)=x2-2x-8find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficient.

Answers

Answered by amitnrw
3

Given :  f(x)=x²-2x-8  

To Find : Zeroes

Solution :

f(x)=x²-2x-8  

using middle term spilt

x²-2x-8  

= x² - 4x + 2x - 8

= x(x - 4) + 2(x - 4)  

= (x - 4)(x + 2)

to Find zeroes

(x - 4)(x + 2) = 0

=> x = 4  , x = - 2

Zeroes are 4 , - 2

ax² + bx + c = 0

=> Sum of zeroes = - b/a

Product of zeroes = c/a

a = 1 , b = - 2 , c = - 8

Zeroes are 4 , - 2

Sum of Zeroes  = 2  = -(-2)/1   = 2

Products of Zeroes  = - 8  = (-8)/1 = -8

Verified

Learn More:

If the zeros of the polynomial x3 - ax2 + bx - c are A.P, then show that ...

https://brainly.in/question/2833140

Find the zeroes of the Quadratic polynomial x2 + rx + 10 and verify ...

https://brainly.in/question/14949572

the sum of the zeroes of the polynomial 3x^2-10x +3 is​ - Brainly.in

https://brainly.in/question/23186627

Answered by llTheUnkownStarll
3

Given,

f(x) = x2 – 2x – 8

To find the zeros, we put f(x) = 0

⇒ x

2 – 2x – 8 = 0

⇒ x

2

- 4x + 2x - 8 = 0

⇒ x(x - 4) + 2(x - 4) = 0

⇒ (x - 4)(x + 2) = 0

This gives us 2 zeros, for

x = 4 and x = -2

Hence, the zeros of the quadratic equation are 4 and -2.

Now, for verification

Sum of zeros = - coefficient of x / coefficient of x2

4 + (-2)= - (-2) / 1

2 = 2

Product of roots = constant / coefficient of x2

4 x (-2) = (-8) / 1

-8 = -8

Therefore, the relationship between zeros and their coefficients is verified.

Similar questions