Math, asked by dsuraj45ro, 5 months ago

f(x)=x²cosx then f'(x)=?
using the formula,f'(x)=f(x+h)-f(x)/h
please use this☝️☝️​

Answers

Answered by senboni123456
1

Step-by-step explanation:

We have,

f(x) =  {x}^{2}  \cos(x)

Now,

 \frac{d(f(x))}{dx}  =  \lim_{h \rarr0}  \frac{f(x + h) - f(x)}{h} \\

 =  \lim_{h \rarr0} \frac{(x + h) ^{2}  \cos(x + h)  -  {x}^{2} \cos(x)  }{h}  \\

=  \lim_{h \rarr0} \frac{ {x}^{2}( \cos(x + h)   -  \cos(x) ) + h(2x + h) \cos(x + h) }{h}  \\

=  \lim_{h \rarr0} \frac{ {x}^{2}( - 2 \sin(x +  \frac{h}{2} ) \sin( \frac{h}{2} )   )}{h}  +  \lim_{h \rarr0}(2x + h) \cos(x + h)  \\

=  -  \lim_{h \rarr0}  \sin(x +  \frac{h}{2}  )   \times   \lim_{h \rarr0} \frac{ \sin( \frac{h}{2} ) }{ \frac{h}{2} }  + (2x + 0) \cos(x + 0)  \\

 =  -  \sin(x)  \times 1 + 2x \cos(x)

 = 2x \cos(x)  -  \sin(x)

Similar questions