Math, asked by StrongGirl, 9 months ago

f(x + y) = f(x) + f(y) + xy^2 + x^2y and lim(x -->0) f(x)/x = 1, then find value of f' (3)

Answers

Answered by pulakmath007
15

\displaystyle\huge\red{\underline{\underline{Solution}}}

f(x + y) = f(x) + f(y) + x {y}^{2}  +  {x}^{2} y

Putting x = 0 & y = 0 in both sides we get

f(0) = f(0) + f(0) + 0 + 0

 \implies \: f(0) = 0

Now it is given that

\displaystyle \lim_{x \to 0} \frac{f(x)}{x} = 1

So

f'(0)

  = \displaystyle \lim_{x \to 0} \frac{f(x) - f(0)}{x}

  = \displaystyle \lim_{x \to 0} \frac{f(x) }{x}

 = 1

Now

f(x + y) = f(x) + f(y) + x {y}^{2}  +  {x}^{2} y

Putting y = h

f(x + h) = f(x) + f(h) + x {h}^{2}  +  {x}^{2} h

So

f'(x)

  = \displaystyle \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}

  = \displaystyle \lim_{h \to 0} \frac{ f(x) + f(h) + x {h}^{2}  +  {x}^{2} h- f(x)}{h}

  = \displaystyle \lim_{h \to 0} \frac{  f(h) + x {h}^{2}  +  {x}^{2} h}{h}

  = \displaystyle \lim_{h \to 0} \frac{  f(h) }{h}  +    \displaystyle \lim_{h \to 0} \frac{   x {h}^{2}  +  {x}^{2} h}{h}

 = 1 +     \displaystyle \lim_{h \to 0} (   x {h}  +  {x}^{2} )

 = 1 +  {x}^{2}

Hence

f'(3) = 1 +  {(3)}^{2}  = 1 + 9 = 10

Similar questions