Math, asked by sunmeet779, 6 months ago

F=xu +0-y, G = u^2 + vy +w, H =zu – v + vw, compute Ə(F, G, H)/(u, v, w).​

Answers

Answered by pulakmath007
19

SOLUTION

GIVEN

 \sf{F = xu + v - y}

 \sf{ G=  {u}^{2}  + vy + w}

 \sf{H = zu  -  v  + vw}

TO DETERMINE

\displaystyle \sf{  \frac{ \partial (F, G, H)}{ \partial (u,v,w)} }

EVALUATION

Here it is given that

 \sf{F = xu + v - y}

 \sf{ G=  {u}^{2}  + vy + w}

 \sf{H = zu  -  v  + vw}

Now

\displaystyle \sf{  \frac{ \partial (F, G, H)}{ \partial (u,v,w)} }

 = \displaystyle \begin{vmatrix}  \frac{ \partial F}{ \partial u}  & \frac{ \partial F}{ \partial v} & \frac{ \partial F}{ \partial w}\\ \\  \frac{ \partial G}{ \partial u}  & \frac{ \partial G}{ \partial v} & \frac{ \partial G}{ \partial w} \\ \\ \frac{ \partial H}{ \partial u}  & \frac{ \partial H}{ \partial v} & \frac{ \partial H}{ \partial w} \end{vmatrix} \:

 = \displaystyle \begin{vmatrix}   \sf{x } & 1 & 0\\ \\   \sf{2u + y}  & 0 & 1 \\ \\  \sf{z}  &   \sf{- 1 + w} &  \sf{v} \end{vmatrix} \:

 \sf{ = x(0 + 1 - w) - 1(2uv + vy - z) + 0}

 \sf{ =  - xw -2uv  - vy  +  z}

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. given u=yzx , v= zxy, w =xyz then the value of d(u,v,w)/d(x,y,z) is (a) 0 (b) 1 (c) 2 (d) 4

https://brainly.in/question/34435016

2. If x=u^2-v^2,y=2uv find the jacobian of x, y with respect to u and v

https://brainly.in/question/34361788

Answered by saritarunmishra52198
5

this is the required solution.

Attachments:
Similar questions