f y =
secx tan x
secx tan x
, then
dx
dy
equals -
(A) 2 sec x (sec x – tan x)2
(B) – 2 sec x (sec x – tan x)2
(C) 2 sec x (sec x + tan x)2
(D) – 2 sec x( sec x + tan x)2
Answers
Answered by
0
Step-by-step explanation:
Given,y=tan
−1
(secx+tanx)
⇒y=tan
−1
[tan(
4
π
+
2
x
)]
[∵tan(
4
π
+
2
x
)=secx+tanx]
⇒y=
4
π
+
2
x
On differentiating w.r.t x we get
dx
dy
=0+
2
1
=
2
1
please follow me
Answered by
0
Answer:
(B)-2 sec x(sec x - tan x)2
Similar questions