f1 f2 R to R
f1 (x) = x²
f2 (x) = x-x²
f1+f2=?
f1xf2=?
Answers
Answered by
1
Answer:
We know that f1 :R→R, given by f1 (x)=x, and f2 (x)=x are one-one.
Proving f1 is one-one :
Calculate f1 (x1 ) :
⇒ f1 (x1 )=x1
Calculate f1 (x2 ) :
⇒ f1 (x2 )=x2
Let f1 (x1 )=f1 (x2 )
⇒ x1 =x2
∴ f1 is one-one.
Proving f2 is one-one :
Calculate f2 (x1 ) :
⇒ f2 (x1 )=x1
Calculate f2 (x2 ) :
⇒ f2 (x2 )=x2
Let f2 (x1 )=f2 (x2 )
⇒ x1 =x2
∴ f2 is one-one.
Proving (f1 ×f2 ) is not one-one:
⇒ (f1 ×f2 )(x)=f1 (x)×f2 (x)
=x×x
=x2
Let x1 and x2 be two elements in the domain R, such that
(f1 ×f2 )(x1 )=(f1 ×f2 )(x2 )
⇒ x1 2 =x2 2
⇒ x1 =±x2
∴(f1 ×f 2 ) is not one-one.
Similar questions