फाइंड द वैल्यू ऑफ के एफ (3, - 4) सन ऑफ द इक्वेशन 5 एक्स प्लस 3 वाइ इक्वल टू के
Answers
Answer:
SOLUTION
GIVEN
\displaystyle \sf
{x = 2 + \sqrt{3}
}x=2+ 3
TO DETERMINE
\displaystyle \sf
{x + \frac
{1}{x} }x 1
EVALUATION
Here it is given that
\displaystyle \sf
{x = 2 + \sqrt
{3} }x=2+ 3
Now
\displaystyle \sf{ \frac
{1}{x}×1
\displaystyle \sf{ = \frac
{1}{2 + \sqrt{3} } }= 2+ 3
1
\displaystyle \sf{ = \frac{2 - \sqrt{3} }{(2 + \sqrt{3})(2 - \sqrt{3} ) } }=
(2+
3
)(2−
3
)
2−
3
\displaystyle \sf{ = \frac{2 - \sqrt{3} }{ {(2)}^{2} - {( \sqrt{3}) }^{2} } }=
(2)
2
−(
3
)
2
2−
3
\displaystyle \sf{ = \frac{2 - \sqrt{3} }{ 4 - 3 } }=
4−3
2−
3
\displaystyle \sf{ = \frac{2 - \sqrt{3} }{1 } }=
1
2−
3
\displaystyle \sf{ = 2 - \sqrt{3} }=2−
3
Hence
\displaystyle \sf{x + \frac{1}{x} }x+
x
1
\sf{ = 2 + \sqrt{3} + 2 - \sqrt{3} }=2+
3
+2−
3
= 4=4
━━━━━━━━━━━━━━━━
Learn more from Brainly :-
1. If x=√3a+2b + √3a-2b / √3a+2b - √3a-2b
prove that bx²-3ax+b=0
https://brainly.in/question/19664646
2. the order of the surd 7√8