Math, asked by HelpEverHurtNever, 24 days ago

Fabina borrows ₹ 12,500 at 12% per annum for 3 years at simple interest and Radha borrows the same amount for the same time period at 10% per annum, compounded annually. Who pays more interest and by how much?​

Answers

Answered by Anonymous
70

Given :

For Fabina :

  • ➻P = ₹ 12,500
  • ➻R = 12% p.a.
  • ➻n = 3 years

For Radha :

  • ➻P = ₹ 12,500
  • ➻R = 10% p.a.
  • ➻n = 3 years

To Find :

The intrest who pays the more and how much?

Solution:

\rule{200pt}{2pt}

   \rm{SI =  \dfrac{P \times R \times n}{100}} \\\\

 \dashrightarrow\dfrac{12,500 \times 12 \times 3}{1 00} \\\\

 \dashrightarrow\dfrac{12,5 \cancel{00} \times 12 \times 3}{1 \cancel { 00}} \\\\

 \dashrightarrow \: ₹4500 \\\\

\rule{200pt}{2pt}

For Radha :

 \rm{CI = A-P} \\\\

  \dashrightarrow  \rm{P \bigg\lgroup  1+  \rm\dfrac{R}{100}    \bigg\rgroup ^{n} - P} \\\\

 \dashrightarrow 12,500\bigg \{1 + \dfrac{10}{1 00}  \bigg \} ^{3} -12,500   \\\\

 \dashrightarrow 12500\bigg \{\dfrac{100  +  10}{1 00}  \bigg \} ^{3} -12,500   \\\\

 \dashrightarrow 12500\bigg \{ \cancel \dfrac{   110}{100}  \bigg \} ^{3} -12,500   \\\\

 \dashrightarrow 12,500\bigg \{ \dfrac{   11}{10}  \bigg \} ^{3} -12,500   \\\\

 \dashrightarrow 12500 \times  \dfrac{   11 \times 11 \times 11}{10 \times  10 \times 10}  -12500   \\\\

 \dashrightarrow 12500 \times  \dfrac{   1331}{1000}  -12,500   \\\\

 \dashrightarrow 12500 \bigg \{   \dfrac{ 1331}{1000}  \bigg \}  - 12500  \\\\

 \dashrightarrow 125 \cancel{00 }\bigg \{   \dfrac{ 1331 }{1 0 \cancel{00}}   \bigg \} - 12500   \\\\

 \dashrightarrow \cancel{ 125 }\bigg \{   \dfrac{ 1331 }{ \cancel{1 0 }}    \bigg \}  - 12500  \\\\

 \dashrightarrow 12.5  \times  1331 - 12500     \\\\

 \dashrightarrow ₹4137.50   \\\\

Difference between the intrests = ₹4500 - ₹4137.5

= ₹362.5

∴ Fabina Pays More intrest --- ₹362.5

\rule{211pt}{8pt}

Answered by Anonymous
33

Answer:

  • ➝ Fabina paid more interest than Radha.
  • ➝ Fabina paid Rs.362.50 more than Radha.

Step-by-step explanation :

Question :

Fabina borrows ₹ 12,500 at 12% per annum for 3 years at simple interest and Radha borrows the same amount for the same time period at 10% per annum, compounded annually. Who pays more interest and by how much?

\begin{gathered}\end{gathered}

Solution :

Calculating the simple interest paid by Fabina.

  • Principle = Rs.12500
  • Rate = 12% per annum
  • Time = 3 years

Substituting the values in the formula :

{\implies{\sf{S.I = \dfrac{P \times R \times T}{100}}}}

{\implies{\sf{S.I = \dfrac{12500\times 12\times 3}{100}}}}

{\implies{\sf{S.I = \dfrac{12500\times 36}{100}}}}

{\implies{\sf{S.I = \dfrac{450000}{100}}}}

{\implies{\sf{S.I = \cancel{\dfrac{450000}{100}}}}}

{\implies{\sf{\underline{\underline{\red{S.I = Rs.4500}}}}}}

Hence, the simple interest is Rs.4500.

\begin{gathered}\end{gathered}

Calculating the compound interest paid by Radha.

  • Principle = Rs.12500
  • Rate = 10% per annum
  • Time = 3 years

Substituting the values in the formula :

{\implies{\sf{C.I = P \bigg[1 + \dfrac{R}{100} \bigg]^{T} - P}}}

{\implies{\sf{C.I = 12500 \bigg[1 + \dfrac{10}{100} \bigg]^{3} - 12500}}}

{\implies{\sf{C.I = 12500 \bigg[\dfrac{100 + 10}{100} \bigg]^{3} - 12500}}}

{\implies{\sf{C.I = 12500 \bigg[\dfrac{110}{100} \bigg]^{3} - 12500}}}

{\implies{\sf{C.I = 12500 \bigg[ \cancel{\dfrac{110}{100}} \bigg]^{3} - 12500}}}

{\implies{\sf{C.I = 12500 \bigg[  \: \dfrac{11}{10} \:  \bigg]^{3} - 12500}}}

{\implies{\sf{C.I = 12500 \bigg[ \dfrac{11}{10}  \times  \dfrac{11}{10}  \times  \dfrac{11}{10} \bigg]- 12500}}}

{\implies{\sf{C.I = 12500 \bigg[ \dfrac{1331}{1000}\bigg]- 12500}}}

{\implies{\sf{C.I = 12500 \times \dfrac{1331}{1000}- 12500}}}

{\implies{\sf{C.I = \cancel{12500} \times \dfrac{1331}{\cancel{1000}}- 12500}}}

{\implies{\sf{C.I = 12.5 \times 1331 - 12500}}}

{\implies{\sf{C.I = 16637.5 - 12500}}}

{\implies{\sf{\underline{\underline{\red{C.I = Rs.4137.50}}}}}}

Hence, the compound interest is Rs.4137.50.

\begin{gathered}\end{gathered}

Since, we can see that :

  • ➝ Fabina > Radha
  • ➝ 4500 > 4137.50,

Hence Fabina paid more interest than Radha.

\begin{gathered}\end{gathered}

Now, calculating the how much interest paid by Fabina more than Radha :

{\implies{\sf{Interest \:  Paid = Fabina  - Radha}}}

{\implies{\sf{Interest \:  Paid = 4500 - 4137.50}}}

{\implies{\sf{\underline{\underline{\red{Interest \:  Paid = 362.50}}}}}}

Hence, the Fabina paid Rs.362.50 more than Radha.

\begin{gathered}\end{gathered}

Learn More :

\longrightarrow\small{\underline{\boxed{\sf{ Simple \: Interest = \dfrac{P \times R \times T}{100}}}}}

\longrightarrow\small{\underline{\boxed{\sf{Amount={P{\bigg(1 + \dfrac{R}{100}{\bigg)}^{T}}}}}}}

\longrightarrow\small{\underline{\boxed{\sf{Amount = Principle + Interest}}}}

\longrightarrow\small{\underline{\boxed{\sf{ Principle=Amount - Interest }}}}

\longrightarrow\small{\underline{\boxed{\sf{Principle = \dfrac{Amount\times 100 }{100 + (Time \times Rate)}}}}}

\longrightarrow\small{\underline{\boxed{\sf{Principle = \dfrac{Interest \times 100 }{Time \times Rate}}}}}

\longrightarrow\small{\underline{\boxed{\sf{Rate = \dfrac{Simple \: Interest \times 100}{Principle \times Time}}}}}

\longrightarrow\small{\underline{\boxed{\sf{Time = \dfrac{Simple \: Interest \times 100}{Principle \times Rate}}}}}

\underline{\rule{220pt}{3.5pt}}

Similar questions