Facforcise
P cube -3p Square - 9p - 5
Answers
Step-by-step explanation:
p³-3p²-9p-5
Let the polynomial be f(p)
f(-1)= (-1)³-3(-1)²-9(-1)-5
= -1-3+9-5
= 9-9
= 0
So, (p+1) is a factor of f(p).
p+1 | p³-3p²-9p-5 | p²-4p-5
- p³±p²
-4p²-9p-5
-4p²-4p
-5p-5
-5p-5
0
So, (p+1)(p²-4p-5)= f(p)
= (p+1)(p²-5p+p-5)
= (p+1){p(p-5)+1(p-5)}
= (p+1)(p-5)(p+1)
Answer:
p³- 3p² -9p -5
f(p)=p³-3p²-9p-5
f(-1)=(-1)³-3(-1)²-9(-1)-5
=-1-3+9-5
=-9+9=0
therefore -1 is the zero of the polynomial
therefore (x+1) is a factor
by synthetic division
-1 1 -3 -9 -5
0 -1 4 5
1 -4 -5 0
therefore 1x²-4x-5 1 x 5
1x²-5x+1x-5
1x(x-5) + 1(x-5)
therefore all the factors are (x+1),(x-5),(1x+1)