Math, asked by 20100092110264, 7 months ago

factor and then solve equation 2x^2-5x-25=0​

Answers

Answered by raj1990600
2
Please see the description image
Attachments:
Answered by Anonymous
6

Question

 \rm \:  \implies2x {}^{2}   - 5x - 25 = 0

Solution:-

Method:- 1 factorization method

 \rm \:  \implies2x {}^{2}   - 5x - 25 = 0

Splitting into middle term

 \rm \:  \implies2x {}^{2}  - 10x + 5x - 25 = 0

 \implies \rm \: 2x(x - 5) + 5(x - 5) = 0

 \rm \:  \implies(2x + 5)(x - 5) = 0

 \rm \: x =   - \dfrac{5}{2}  \:  \: and \:  \: x = 5

Method :- 2 quadratic formula

\rm \:  \implies2x {}^{2}   - 5x - 25 = 0

Compare with:- ax² + bx + c = 0

 \rm \: a = 2,b =  - 5 \:  \: and \:  \: c =  - 25

Quadratic formula

 \rm \: x =  \dfrac{ -b \pm \sqrt{ {b}^{2}  - 4ac} }{2a}

 \rm \: x =  \dfrac{ - ( - 5) \pm \sqrt{( - 5) {}^{2} - 4 \times 2 \times  - 25 } }{2 \times 2}

 \rm \: x =  \dfrac{5 \pm \sqrt{25 + 200} }{4}

 \rm \: x =  \dfrac{5 \pm \:  \sqrt{225} }{4}

 \rm \: x =  \dfrac{5 \pm15}{4}

 \rm \: x =  \dfrac{15 + 5}{4}  \: and \:  \dfrac{ - 15 + 5}{4}

 \rm \: x \:  =  \dfrac{20}{4}  \:  \: and \:  \:  \dfrac{ - 10}{4}

 \rm \: x = 5 \:  \:  \: and \:  \:  \dfrac{ - 5}{2}

Similar questions