Math, asked by zerokiryu628, 1 year ago

Factor k 2 + 13k + 12.

Answers

Answered by sijasubbiah
0
Hey

Here is your answer,

K^2 + 13 k + 12 =0
K^2 + k + 12k +12=0
K(k+1)+12(k+1)=0
(K+1)(k+12)=0
K+1=0
K=-1
K+12=0
K=-12

Hope it helps you!

nishantmall8055: hy
Answered by nishantmall8055
1
k2+13k+12 

Final result :

(k + 12) • (k + 1)

Reformatting the input :

Changes made to your input should not affect the solution:

 (1): "k2"   was replaced by   "k^2". 

Step by step solution :

Step  1  :

Trying to factor by splitting the middle term

 1.1     Factoring  k2+13k+12 

The first term is,  k2  its coefficient is  1 .
The middle term is,  +13k  its coefficient is  13 .
The last term, "the constant", is  +12 

Step-1 : Multiply the coefficient of the first term by the constant   1 • 12 = 12 

Step-2 : Find two factors of  12  whose sum equals the coefficient of the middle term, which is   13 .

     -12   +   -1   =   -13     -6   +   -2   =   -8     -4   +   -3   =   -7     -3   +   -4   =   -7     -2   +   -6   =   -8     -1   +   -12   =   -13     1   +   12   =   13   That's it


Step-3 : Rewrite the polynomial splitting the middle term using the two factors found in step 2 above,  1  and  12 
                     k2 + 1k + 12k + 12

Step-4 : Add up the first 2 terms, pulling out like factors :
                    k • (k+1)
              Add up the last 2 terms, pulling out common factors :
                    12 • (k+1)
Step-5 : Add up the four terms of step 4 :
                    (k+12)  •  (k+1)
             Which is the desired factorization

Final result :

(k + 12) • (k + 1)
Similar questions