Math, asked by Jilssi, 6 months ago

factor of 28x^8y^4z^6 + 16x^3y^4z^5?

Answers

Answered by SumanSourav000
7

Answer:

4x³y⁴z⁵(7x⁵z+4)

Step-by-step explanation:

Factor 28x⁸y⁴z⁶+16x³y⁴z⁵

28x⁸y⁴z⁶+16x³y⁴z⁵

=4x³y⁴z⁵(7x⁵z+4)

Answered by Manmohan04
6

Given,

\[28{x^8}{y^4}{z^6} + 16{x^3}{y^4}{z^5}\]

Solution,

\[\begin{array}{l} = 28{x^8}{y^4}{z^6} + 16{x^3}{y^4}{z^5}\\ = 7 \times 4{x^8}{y^4}{z^6} + {4^2}{x^3}{y^4}{z^5}\\ = 4\left( {7{x^8}{y^4}{z^6} + 4{x^3}{y^4}{z^5}} \right)\\ = 4{x^3}\left( {7{x^5}{y^4}{z^6} + 4{y^4}{z^5}} \right)\\ = 4{x^3}{y^4}\left( {7{x^5}{z^6} + 4{z^5}} \right)\\ = 4{x^3}{y^4}{z^5}\left( {7{x^5}z + 4} \right)\end{array}\]

Hence the factor of \[28{x^8}{y^4}{z^6} + 16{x^3}{y^4}{z^5}\] is \[4{x^3}{y^4}{z^5}\left( {7{x^5}z + 4} \right)\].

Similar questions