Factor the following completely, full solution each.
1. x² + 3x - 18
2. 3x² - 9x - 12
3. 18x² + 3x - 15
4. 5x² + 32x + 12
5. 3x³ + 24
Answers
1. x² + 3x - 18
= x² + 6x-3x-18
= x(x+6)-3(x+6)
=(x+6)(x-3)
2. 3x² - 9x - 12
= (3x² - 9x - 12)/3
= x²- 3x- 4
= x²-4x+x-4
=x(x-4)+1(x-4)
=(x-4)(x+1)
3. 18x² + 3x - 15
= (18x² + 3x - 15)/3
= 6x²+x-5
= 6x²+6x-5x-5
=6x(x+1)-5(x+1)
=(x+1)(6x-5)
4. 5x² + 32x + 12
= 5x²+30x+2x+12
= 5x(x+6)+2(x+6)
5. 3x³ + 24
= 3(x³+8)
= 3(x³ + 2³)
= 3[ (x+2)(x²-2x+2²)]
=3 [(x+2)(x-2)²]
= [ (3)(x+2)(x-2)(x-2) ]
HOPE THIS WILL HELP YOU!
1.) x²+3x-18
= x²+6x-3x-18
= x(x-6)-3(x-6)
= (x-6)(x-3)
2.) 3x²-9x-12
= 3x²-3x+12x-12
= 3x(x-1)+12(12-1)
= (x-1)(3x+12)
3.) 18x²+3x-15
= 18x²+18x-15x-15
= 18x(x+1)-15(x+1)
= (x+1)(18x-15)
4.) 5x²+32x+12
= 5x²+30x-2x+12
= 5x(x+6)+2(x+6)
= (x+6)(5x+2)
5.) 3x³ + 24
= 3 (x³+8)
= 3(x³+2³)
= Using identity :- a³-b³ = (a-b)(a²+b²-ab)
= (x-2)(x²+2²-2x)
= 3 (x-2) (x²-2x+4)
✒ Extra Information :-
A quadratic equation is an equation of the second degree, meaning it contains at least one term that is squared. The standard form is ax² + bx + c = 0 with a, b, and c being constants, or numerical coefficients, and x is an unknown variable.