Math, asked by rizwankalam8, 7 months ago

Factorice:(a-b) ^3 +(b-c) ^3 +(c-a) ^3​

Answers

Answered by IIMidnightHunterII
1

Answer:

here \: we \: have \: to \: use \: the \: formula \:  \\ (x - y) ^{3}  =  {x}^{3}  -  {y}^{3}  - 3xy(x - y) \\  \\  \\  = (a - b) ^{3}  + (b - c) ^{3}  + (c - a) ^{3}  \\  \\  =  {a}^{3}  -  {b}^{3}  - 3ab(a - b) \\  \\  =  {a}^{3}  -  {b}^{3}  - 3 {a}^{2} b + 3a {b}^{2} ......i \\  \\  =  {b}^{3}  -  {c}^{3}  - 3bc(b - c) \\  \\  =  {b}^{3}  -  {c}^{3}  - 3 {b}^{2} c + 3b {c}^{2} .......ii \\  \\  =  {c}^{3}  -  {a}^{3}  - 3ca(c - a) \\  \\  =  {c}^{3}  -  {a}^{3}  - 3 {c}^{2} a + 3c {a}^{2} .......iii \\  \\  \\ now \: add \: i + ii + iii \\  \\  = ( {a}^{3}  -  {b}^{3}  - 3 {a}^{2} b + 3a {b}^{2} ) +  \\ ( {b}^{3}  -  {c}^{3}  - 3 {b}^{2} c + 3b {c}^{2} ) +  \\ ( {c}^{3}  -  {a}^{3}  - 3 {c}^{2} a + 3c {a}^{2} ) \\  \\  =  {a}^{3}  -  {a}^{3}  -  {b}^{3}  +  {b}^{3}  -  {c}^{3}  +  {c}^{3}  - 3  {a}^{2} b + 3a {b}^{2}  - 3 {b}^{2} c + 3b {c}^{2}  - 3 {c}^{2} a + 3c {a}^{2}  \\  \\  = - 3  {a}^{2} b + 3a {b}^{2}  - 3 {b}^{2} c + 3b {c}^{2}  - 3 {c}^{2} a + 3c {a}^{2}

HOPE IT HELPS U

Similar questions