Math, asked by aryanrajputgaggi939, 10 months ago

Factorie (i) (a³-343³)​

Answers

Answered by Mysterioushine
7

\huge{\mathcal{\underline{\pink{Solution:-}}}}

(a³ - 343) = (a³ - 7³)

\large\rm\bold{\underline{\boxed{(a^3-b^3)\:=\:(a-b)(a^2+ab+b^2)}}}

⇒ (a³ - 7³) = (a - 7)(a² - 7a + 49)

∴ (a³- 343) = (a - 7)( a² - 7a + 49)

\huge\tt{\underline{\underline{\green{Additional\:information:-}}}}

❃ (a³+b³) = (a + b)(a² - ab + b²)

❃ (a+b)³ = a³ + b³ + 3ab(a + b)

❃ (a-b)³ = a³ - b³ - 3ab(a - b)

❃ a³ + b³ + c³ = 3abc { only when a+b+c is equal to zero }

Answered by kushalchauhan07
6

 ({a}^{ 3}  - 343 ^{3} )

(a \times a \times a - 7 \times 7 \times 7)

value \: of \: a \:  = a \:  \: and \: b = 7

 ({a}^{3}  -  {b}^{3} ) = (a - b)( {a}^{2}  + ab +  {b}^{2} )

putting \: the \: value \: of \: a \: and \: b \: in \: the \: factors

(a - 7)( (a) ^{2}  + 7 \times a + (7)^{2} )

(a - 7)( {a}^{2}  + 7a +  49 )

 =  > ( {a}^{2}  + (7 + 7)a + 49)

 {a}^{2}  + 7a + 7a + 49 = 0

a(a + 7) + 7(a + 7)

(a + 7)(a +7 )

( {a}^{2}  + 49)

so \: the \: factors \: are(a - 7)(a + 7)(a + 7)

or

(a - 7)( {a}^{2}  + 49)

hope it will help u dear❣❣❣❣

Similar questions