Math, asked by rshauryakumar, 11 months ago

Factories 125x^3-27y^3+z^2+45xyz

Answers

Answered by SyedAyaan
1

Answer: (5x-3y+z)(25x^2+9y^2+z^2+15xy+3yz-5xz)

Step-by-step explanation:

Required Identity :

x^3+y^3+z^3-3xyz=(x+y+z)(x^2+y^2+z^2-xy-yz-xz)    (1)

25x^3 - 27y^3 + z^3 + 45xyz can be written as :

(5x)^3+(-3y)^3+z^3-3(5x)(-3y)(z)\\\\=(5x-3y+z)((5x)^2+(-3y)^2+z^2-5x(-3y)-(-3y)z-5xz)\\\\=(5x-3y+z)(25x^2+9y^2+z^2+15xy+3yz-5xz)

The factorization of 25x^3 - 27y^3 + z^3 + 45xyz is

(5x-3y+z)(25x^2+9y^2+z^2+15xy+3yz-5xz)

Similar questions