factories by expressing into a perfect square-a^2-4a+3+2b-b^2
Answers
Answered by
4
Hi ,
a² - 4a + 3 + 2b - b²
= a² - 4a + 4 - 1 + 2b - b²
= ( a² - 4a + 4 ) - ( 1 - 2b + b² )
= (a² - 2 × a × 2 + 2² ) - ( 1²-2×1×b+b²)
= ( a - 2 )² - ( 1 - b )²
= ( a - 2 + 1 - b ) [ ( a - 2 ) - ( 1 - b ) ]
= ( a - b - 1 ) ( a - 2 - 1 + b )
= ( a - b - 1 ) ( a + b - 3 )
I hope this helps you.
: )
a² - 4a + 3 + 2b - b²
= a² - 4a + 4 - 1 + 2b - b²
= ( a² - 4a + 4 ) - ( 1 - 2b + b² )
= (a² - 2 × a × 2 + 2² ) - ( 1²-2×1×b+b²)
= ( a - 2 )² - ( 1 - b )²
= ( a - 2 + 1 - b ) [ ( a - 2 ) - ( 1 - b ) ]
= ( a - b - 1 ) ( a - 2 - 1 + b )
= ( a - b - 1 ) ( a + b - 3 )
I hope this helps you.
: )
Answered by
4
Hey friend, Harish here.
Here is your answer:
To factorize:
a² - 4a + 3 + 2b - b²
Solution:
⇒ [tex]a\² - 4a + 3 + 2b - b^{2} = a^{2} - 4a + 4 - 1 + 2b - b^{2} [/tex]
(Here we have added and subtracted one).↑
⇒
⇒
We know that, a² - b² = (a+b)(a-b)
⇒
⇒
___________________________________________________
Hope my answer is helpful to you.
Here is your answer:
To factorize:
a² - 4a + 3 + 2b - b²
Solution:
⇒ [tex]a\² - 4a + 3 + 2b - b^{2} = a^{2} - 4a + 4 - 1 + 2b - b^{2} [/tex]
(Here we have added and subtracted one).↑
⇒
⇒
We know that, a² - b² = (a+b)(a-b)
⇒
⇒
___________________________________________________
Hope my answer is helpful to you.
Similar questions