Math, asked by nverma8183, 10 months ago

factories P(x) =x^4+x^3-7x^2-x+6 by factor theorem​

Answers

Answered by Anonymous
2

 \large\bf\underline{Solution:-}

★ Here we have x4 + x 3 - 7x2 - x + 6  

★ Here we have constant term 6 and cofiicient of x4 is 1 , so 

★ we can find zeros of this equation for  ± 1  , ± 2 , ± 3 , ± 6

★ so  we put x  =  1 and check if that satisfied our equation , 

  • = ( 1 )4 + ( 1 ) 3  - 7 ( 1 )2  - ( 1 ) + 6 

  • = 1 + 1  - 7 - 1 + 6 

  • = 0 

★ So ( x  - 1  )  is a factor of our equation  

★ now we divide our equation by ( x - 1 )  , and get 

  • x4 + x3- 7x2- x + 6/x-1=x3 + 2x2  - 5x  - 6 

So ,we get  x³ + 2x2  - 5x  - 6 

★ Here we have constant term 6 and cofiicient of x3 is 1 , so 

★ we can find zeros of this equation for ± 1  , ± 2 , ± 3 , ± 6

★so  we put x =  - 1 and check if that satisfied our equation , 

= ( - 1 )4 + ( - 1 ) 3 - 7 ( - 1 )2 - ( - 1 ) + 6 

= 1 - 1  - 7 + 1 + 6 

= 0 

★ So ( x + 1  )  is a factor of our equation  

★ now we divide our equation by ( x + 1 )  , and get

So, we get 

x² + x - 6 

★ Now we write it As  : 

x² + 3x - 2x  - 6 

x ( x + 3 ) - 2 ( x + 3 ) 

( x - 2 ) ( x + 3 ) 

★ So we have factors  

x⁴ + x³ - 7x2 - x + 6    = ( x  - 1 ) ( x + 1 ) ( x - 2 ) ( x + 3 ) 

____________________________

Answered by nidhirandhawa7
2

Step-by-step explanation:

pls make it brainlest answer

Attachments:
Similar questions