Math, asked by aaaaaaaaa47, 1 year ago

FACTORIES
5 \sqrt{5  } {x}^{2} + 20x + 3 \sqrt{5}

Answers

Answered by BrainlyVirat
12
Factorize : 5 \sqrt{5 } {x}^{2} + 20x + 3 \sqrt{5} = 0

Comparing the given equation with ax^2 + bx + c = 0, we get =>

a = 5√5

b = 20

c = 3√5

Now,

 \tt {b^2 - 4ac = (20) {}^{2} - 4 \times 5 \sqrt{5} \times 3 \sqrt{5}}

 \tt {= 400 - 4 \times 15 \times 5}

 \tt {= 400 - 300}

 = 100

b^2 - 4ac = 100.

Now, Using Formula Method,

 \tt{x = \frac{ - b (+ - ) \sqrt{b {}^{2} - 4ac } }{2a}}

 \tt{ = \frac{ - 20( + - ) \sqrt{100} }{2 \times 5 \sqrt{5}} }

 \tt{= \frac{ - 20( + - )10}{10 \sqrt{5} }}

 \tt { = \frac{-20 + 10}{10 \sqrt{5} } \: \: \: \: or \: \: \: \: \frac{-20 - 10}{10 \sqrt{5} }}

 \tt{ = \frac{-30}{10 \sqrt{5} } \: \: \: or \: \: \: \frac{-10}{3 \sqrt{5}} }

 \tt {= \frac{-3}{ \sqrt{5} } \: \: \: or \: \: \: \frac{-1}{ \sqrt{5}} }

Hence,

(X = -3/√5) or (X = -1/√5)

Anonymous: Awesome re! Keep it up!❤
BrainlyVirat: Thanks ! ❤️ ^-^
Answered by Anonymous
16
\textbf{\huge{ANSWER:}}

\sf{Given\:equation:}

5\sqrt{5}x^{2} + 20x + 3\sqrt{5}

Let's do this by the splitting middle term method :-

5\sqrt{5}x^{2} + 20x + 3\sqrt{5}

=》 5\sqrt{5}x^{2} + 15x + 5x + 3\sqrt{5}

=》 5x ( \sqrt{5} + 3) + \sqrt{5}(\sqrt{5} x + 3)

=》 (5x + \sqrt{5}) (\sqrt{5} x + 3)

Now, we've simplified the L.H.S.

Let's now equal L.H.S. and R.H.S.

Start with keeping the values equal to zero, as the R.H.S. = 0 :-

=》 5x + \sqrt{5} = 0

=》 \boxed{x = \frac{(-1)}{\sqrt{5}}}\\

Or

=》 \boxed{x = \frac{(-3)}{\sqrt{5}}}\\

The value of x can vary between both the values obtained by solving. You can again go through the answer and ask your doubts in the comments section.

chandrasarmah9576: Good answer
Anonymous: Thanks!
aaaaaaaaa47: best answer
Anonymous: Thanks!
Similar questions