Math, asked by nilkamalshrivastava, 3 months ago

factories the following​

Attachments:

Answers

Answered by Anonymous
35

 {\pmb{\underline{\sf{ Required \ Solution ... }}}} \\

  • x⁴ + x² + 1

It is certainly possible over the real numbers, because in this setting the only nonlinear irreducible polynomials have degree two (and negative discriminant).

Now, It's time to Factories this Polynomial.

We can add & subtract x² to make Factorisation easier as that:-

 \\ \circ \ {\pmb{\underline{\sf{ According \ to \ Question: }}}} \\ \\  \colon\Rightarrow{\sf{ x^4+x^2+1}} \\ \\ \colon\Rightarrow{\sf{ (x^4+x^2+1+x^2)-x^2 }} \\ \\ \colon\Rightarrow{\sf{ (x^4+2x^2+1)-x^2 }} \\ \\ \colon\Rightarrow{\sf{ ([x^2]^2+2[x^2][1]+[1]^2)-x^2 }} \\ \\ \colon\Rightarrow{\sf{ (x^2+1)^2-x^2 }}

Now, Using this Identity as:

 \colon\Rightarrow{\sf\purple{ a^2-b^2 = (a-b)(a+b) }} \\ \\ \colon\Rightarrow{\sf{ (x^2+1)^2-x^2 }} \\ \\ \colon\Rightarrow{\sf{ (x^2+1-x)(x^2+1+x) }} \\ \\ \colon\Rightarrow{\underline{\boxed{\sf{ (x^2-x+1)(x^2+x+1)  }}}} \\

Hence,

 \\ {\pmb{\underline{\sf\red{ (x^4+x^2+1) = (x^2-x+1)(x^2+x+1) \ after \ Arranging. }}}}

Similar questions