Math, asked by sohtunmulbiris, 1 month ago

Factories the following:

(i) x^2 + 1/x^2 - 2 - 3x + 3/x.
(ii) a^2 x^2 + (ax^2 + 1) x + a.

Answer ASAP
No Spams❌
Spams Answers Will Be Reported
Answer with Method. ​

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-(i)}}

\rm :\longmapsto\: {x}^{2} + \dfrac{1}{ {x}^{2} } - 2 - 3x + \dfrac{3}{x}

can be rewritten as

\rm \:  =  \:\: {x}^{2} + \dfrac{1}{ {x}^{2} } - 2 \times x \times \dfrac{1}{x}  - 3x + \dfrac{3}{x}

We know that,

\boxed{ \bf{ \:  {x}^{2} +  {y}^{2} - 2xy =  {(x - y)}^{2} }}

\rm \:  =  \:  \:  {\bigg(x - \dfrac{1}{x}  \bigg) }^{2} - 3\bigg(x - \dfrac{1}{x} \bigg)

\rm \:  =  \:  \: \bigg(x - \dfrac{1}{x} \bigg)\bigg(x - \dfrac{1}{x} - 3 \bigg)

\large\underline{\sf{Solution-(ii)}}

\rm :\longmapsto\: {a}^{2} {x}^{2} + ( {ax}^{2} +  1)x + a

can be rewritten as

\rm \:  =  \:  \:  {a}^{2} {x}^{2}  +  {a}^{}  {x}^{3} + x + a

\rm \:  =  \:  \:  {a} {x}^{2}(a + x) + 1(a + x)

\rm \:  =  \:  \: (x + a)( {ax}^{2}  + 1)

Additional Information : -

More Identities to know :-

(a + b)² = a² + 2ab + b²

(a - b)² = a² - 2ab + b²

a² - b² = (a + b)(a - b)

(a + b)² = (a - b)² + 4ab

(a - b)² = (a + b)² - 4ab

(a + b)² + (a - b)² = 2(a² + b²)

(a + b)³ = a³ + b³ + 3ab(a + b)

(a - b)³ = a³ - b³ - 3ab(a - b)

Answered by rohithkrhoypuc1
4

Answer:

\underline{\purple{\ddot{\Maths dude}}}

◇◇I posted your answer on attachment refer it.

◇◇Hope it helps u mate .

♧♧Thank you.

Attachments:
Similar questions