Math, asked by MarsaL04, 11 months ago

factories the following

2x { }^{2}  -  \sqrt{3x } - 3

Answers

Answered by DrNykterstein
0

2 {x}^{2}  -  \sqrt{3} x - 3 = 0 \\  \\  \frac{2}{2} {x}^{2}  -   \frac{ \sqrt{3} }{2}x  =  \frac{3}{2} \\  \\  {(x)}^{2}    - 2 \times  \frac{ \sqrt{3} }{4}  \times x +  {\left( \frac{ \sqrt{3} }{4} \right) }^{2}  =  \frac{3}{2}  + {\left( \frac{ \sqrt{3} }{4} \right) }^{2} \\  \\   \left( x  -  \frac{ \sqrt{3} }{4}  \right)^{2}  =  \frac{3}{2}  +  \frac{3}{16}  \\  \\ \left( x  -  \frac{ \sqrt{3} }{4}  \right)^{2} =  \frac{24 + 3}{16}  \\  \\  \left( x  -  \frac{ \sqrt{3} }{4}  \right)^{2} =  \frac{27}{16} \\  \\ x -  \frac{ \sqrt{3} }{4}   =  \pm \:  \frac{3 \sqrt{3} }{4}

Case 1

x -  \frac{ \sqrt{3} }{4}  =  \frac{3 \sqrt{3} }{4}  \\  \\ x =  \frac{ \sqrt{3} }{4}  +  \frac{3 \sqrt{3} }{4}  \\  \\ x =  \frac{ \cancel{4} \sqrt{3} }{ \cancel{4}}  \\  \\ x =  \sqrt{3}

Case 2

x -  \frac{ \sqrt{3} }{4}  =  -  \frac{ 3\sqrt{3} }{4} \\  \\ x =  -  \frac{3 \sqrt{3} }{4}  +  \frac{ \sqrt{3} }{4}  \\  \\ x =  \frac{ - 3 \sqrt{3} +  \sqrt{3}  }{4}  \\  \\ x =  -  \frac{ \cancel{2} \sqrt{3} }{ \cancel{4}}  \\  \\ x =  -  \frac{ \sqrt{3} }{2}

Hence Values of x are:

 -  \frac{ \sqrt{3} }{2}  \:  \: and \:  \:  \sqrt{3}

Similar questions