Math, asked by artirastogi5539, 1 month ago

factories the following:


x^2 - y^2 – 2y - 1​

Answers

Answered by kediakishan3
4

:x^{2} -y^{2} -2y-1\\x^{2}( -y2-2y-1)\\x^{2}( -y2-y-y-1)\\x^{2}( -y(y+1)-1(y+1))\\x^{2} ((y+1)(-y-1))\\(x+y+1)(x-y-1)

Answered by CuteAnswerer
7

GIVEN :

  • \bf{x^ 2 - y^2 - 2y-1} .

TO FIND :

  • Factorised form.

FORMULA REQUIRED :

  • \bigstar \underline{ \boxed{ \red{\bf{ a^2+2ab+b^2 = {(a + b)}^{2} }}}}

  • \bigstar \underline{ \boxed{ \red{\bf{ a^2 - b^2 = (a - b) (a + b) }}}}

SOLUTION :

\implies\sf{x^ 2 -y^ 2 -  2y  - 1} \\

 \implies\sf{x^ 2 -(y^ 2  +   2y   + 1)}

  • Used \bf{ a^2+2ab+b^2 = {(a + b)}^{2}} .

\implies\sf{(x)^ 2 -{(y + 1)}^{2} }

  • Used \bf{ a^2 - b^2 = (a - b) (a + b)}.

 \implies\sf{	 \big[x -(y + 1) \big]\big[x + (y + 1)\big]} \\

 \implies\underline{\boxed{\pink{\bf{(x - y - 1)(x + y + 1)}}}}\\

Some important identities :

  • \bigstar \underline{ \boxed{ \green{\bf{ {(a - b)}^{2} = a^2 - 2ab + b^2 }}}}

  • \bigstar \underline{ \boxed{ \green{\bf{ {(a +b)}^{2} = a^2 + 2ab + b^2 }}}}

  • \bigstar \underline{ \boxed{ \green{\bf{ {(a +b)}^{0} = 1 }}}}

  •  \bigstar \underline{ \boxed{ \green{\bf{ {(a +b)}^{1} = a +b }}}}

Anonymous: Nice ☃️
Skyllen: Great ☔
Similar questions