Math, asked by ashutosh82811, 11 months ago

factories using factor theoremx^4-7x^3+9x^2+7x-10​

Answers

Answered by Anonymous
113

\mathfrak{\huge{\blue{\underline{\underline{AnswEr :}}}}}

Φ  {x}^{4}  - 7 {x}^{3}  + 9 {x}^{2} + 7x - 10

 {x}^{4}  - 7 {x}^{3}  + 10 {x}^{2}  -  {x}^{2}  + 7x - 10

 {x}^{2} ( {x}^{2}  - 7x + 10) - 1( {x}^{2}  - 7x + 10)

( {x}^{2}  - 1)( {x}^{2}  - 7x + 10)

 {x}^{2}  - 1 = 0 \: Or, \:  {x}^{2}  - 7x + 10 = 0

 {x}^{2}  = 1

 \boxed{ \red{x = ±1}}

Φ Now, \: ( {x}^{2}  - 7x + 10 = 0)

 {x}^{2}  - 5x  - 2x + 10 = 0

x(x - 5) - 2(x - 5) = 0

(x - 2)(x - 5) = 0

(x - 2) = 0 \: Or, \: (x - 5) = 0

 \boxed{ \red{x = 2 \:  \: Or, \:  \: x = 5}}

Solutions of this Polynomial are

  \huge\boxed{ \purple{x  = ±1 \: , \:  \: 2 \: \:  or, \:  \: 5}}

Answered by 5queen36
8

\mathtt{\large{\underline{\underline{AnswEr :}}}}

Φ  {x}^{4}  - 7 {x}^{3}  + 9 {x}^{2} + 7x - 10

 {x}^{4}  - 7 {x}^{3}  + 10 {x}^{2}  -  {x}^{2}  + 7x - 10

 {x}^{2} ( {x}^{2}  - 7x + 10) - 1( {x}^{2}  - 7x + 10)

( {x}^{2}  - 1)( {x}^{2}  - 7x + 10)

 {x}^{2}  - 1 = 0 \: Or, \:  {x}^{2}  - 7x + 10 = 0

 {x}^{2}  = 1

 \boxed{ \pink{x = ±1}}

Φ Now, \: ( {x}^{2}  - 7x + 10 = 0)

 {x}^{2}  - 5x  - 2x + 10 = 0

x(x - 5) - 2(x - 5) = 0

(x - 2)(x - 5) = 0

(x - 2) = 0 \: Or, \: (x - 5) = 0

 \boxed{ \pink{x = 2 \:  \: Or, \:  \: x = 5}}

Similar questions