Math, asked by kumari21julysantosh, 1 year ago

Factories x^3 -2x^2 -x+2

Answers

Answered by anvika66
0

Hey mate here's ur answer

Attachments:

kumari21julysantosh: Thanks
anvika66: welcome
anvika66: pls mark it as brainliest pls psl
Answered by shadowsabers03
8

\textsf{Let $p(x) = x^3 - 2x^2 - x + 2$} \\ \\ \textsf{First we have to find any values for $x$ which causes $p(x) = 0$} \\ \\ \\ \textsf{Let $x = 1$.} \\ \\ p(1) = 1^3 - 2(1)^2 - 1 + 2\\ \\ p(1) = 1 - 2 - 1 + 2 \\ \\ p(1) = 0 \\ \\ \\ \therefore\ \bold{1}\ \textsf{is a zero of $p(x)$. So $(x - 1)$ is a factor.}

\textsf{Now we have to divide $p(x)$ by $(x - 1)$.} \\ \\ \\ x^3 - 2x^2 - x + 2 \\ \\ x^3 - x^2 - x^2 + x - 2x + 2 \\ \\ x^2(x - 1) - x(x - 1) - 2(x - 1) \\ \\ (x - 1)(x^2 - x - 2) \\ \\ (x - 1)(x^2 + x - 2x - 2) \\ \\ (x - 1)(x(x + 1) - 2(x + 1)) \\ \\ (x - 1)(x + 1)(x - 2)\\ \\ \\ \therefore\ \ \Large \text{$x^3 - 2x^2 - x + 2 = (x - 1)(x + 1)(x - 2)$}

\textsf{We would get the answer easier on dividing $p(x)$ by $(x - 2)$.} \\ \\ \\ x^3 - 2x^2 - x + 2 \\ \\ x^2(x - 2) - (x - 2) \\ \\ (x - 2)(x^2 - 1) \\ \\ (x - 2)(x + 1)(x - 1)

Similar questions