Math, asked by zainabfa002, 2 months ago

factories :
x^4+x^2+1​

Answers

Answered by prabhjot7419
0

Answer:

The given eq. is x^4+x^2+1 ,

we know that , ( a+b )^2 = a^2 +b^2+ 2ab

to factorise the given eq. we need to calculate ( x^2+1)2 .

we should use formula (a+b) ^2= a^2+b^2+2ab to find value of (x^2+1) 2 .

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given expression is

 \red{\rm :\longmapsto\: {x}^{4} +  {x}^{2} + 1}

To factorize this expression, add and subtract x², we get

\rm \:  =  \:  \:  {x}^{4} +  {x}^{2} + 1 +  {x}^{2} -  {x}^{2}

\rm \:  =  \:  \:  {x}^{4} +  2{x}^{2} + 1  -  {x}^{2}

\rm \:  =  \:  \:  ({x}^{4} +  2{x}^{2} + 1)  -  {x}^{2}

\rm \:  =  \:  \:  ( {( {x}^{2}) }^{2}  +  2 \times {x}^{2} \times 1 +  {1}^{2} )  -  {x}^{2}

We know that,

 \blue{ \boxed{\bf  \: {x}^{2} + 2xy +  {y}^{2} =  {(x + y)}^{2}}}

\rm \:  =  \:  \:  {( {x}^{2} + 1) }^{2} -  {x}^{2}

Now, we further know that

 \blue{ \boxed{\bf  \: {x}^{2} -  {y}^{2} = (x + y)(x - y)}}

\rm \:  =  \:  \: ( {x}^{2} + 1 + x)( {x}^{2} + 1 - x)

\rm \:  =  \:  \: ( {x}^{2}+ x + 1)( {x}^{2}- x + 1)

Hence,

Factorization of

 \red{\rm :\longmapsto\: {x}^{4} +  {x}^{2} + 1}

 \red{\bf \:  =  \:  \: ( {x}^{2}+ x + 1)( {x}^{2}- x + 1) }

Let take one more example of same type!!

 \red{\rm :\longmapsto\: {x}^{4} +  {x}^{2} {y}^{2}  +  {y}^{4} }

To factorize this expression, add and subtract x²y², we get

\rm \:  =  \:  \:  {x}^{4} +  {x}^{2} {y}^{2} +  {y}^{4} +  {x}^{2} {y}^{2} -  {x}^{2} {y}^{2}

\rm \:  =  \:  \:  {x}^{4} +  2{x}^{2} {y}^{2} +  {y}^{4} -  {x}^{2} {y}^{2}

\rm \:  =  \:  \: ( {x}^{4} +  2{x}^{2} {y}^{2} +  {y}^{4}) -  {x}^{2} {y}^{2}

\rm \:  =  \:  \: ( \: {( {x}^{2} )}^{2}  +  2{x}^{2} {y}^{2} +   {( {y}^{2} )}^{2} \:  ) -  {x}^{2} {y}^{2}

We know,

 \blue{ \boxed{\bf  \: {x}^{2} + 2xy +  {y}^{2} =  {(x + y)}^{2}}}

\rm \:  =  \:  \:  {( {x}^{2} +  {y}^{2} ) }^{2} -  {x}^{2} {y}^{2}

\rm \:  =  \:  \:  {( {x}^{2} +  {y}^{2} ) }^{2} -  ({x}{y})^{2}

Now, we further know that,

 \blue{ \boxed{\bf  \: {x}^{2} -  {y}^{2} = (x + y)(x - y)}}

\rm \:  =  \:  \: ( {x}^{2}+  {y}^{2}  + xy)( {x}^{2} +  {y}^{2} - xy)

Hence,

Factorization of

 \red{\rm :\longmapsto\: {x}^{4} +  {x}^{2} {y}^{2}  +  {y}^{4} }

 \red{\bf \:  =  \:  \: ( {x}^{2}+  {y}^{2}  + xy)( {x}^{2} +  {y}^{2} - xy)}

More Identities to know:

(a + b)² = a² + 2ab + b²

(a - b)² = a² - 2ab + b²

a² - b² = (a + b)(a - b)

(a + b)² = (a - b)² + 4ab

(a - b)² = (a + b)² - 4ab

(a + b)² + (a - b)² = 2(a² + b²)

(a + b)³ = a³ + b³ + 3ab(a + b)

(a - b)³ = a³ - b³ - 3ab(a - b)

Similar questions