Math, asked by hirokmaity572, 4 months ago

factorisation = (a²-b²-c²+d²)-4(ad-bc) ²​

Answers

Answered by Flaunt
24

\huge\bold{\gray{\sf{Answer:}}}

Explanation:

( {a}^{2}  -  {b}^{2}  -  {c}^{2}  +  {d}^{2} ) - 4 {(ad - bc)}^{2}

Identity used here :-

\bold{\boxed{ {(a - b)}^{2}  =  {a}^{2}  +  {b}^{2}  - 2ab}}

 =  > ( {a}^{2}  -  {b}^{2}  -  {c}^{2}  +  {d}^{2} ) - 4( {a}^{2}  {d}^{2}  +  {b}^{2}  {c}^{2}  - 2adbc)

 =  >  {a}^{2}  -  {b}^{2}  -  {c}^{2}  +  {d}^{2}  - 4 {a}^{2}  {d}^{2}  - 4 {b}^{2}  {c}^{2}  + 8adbc

 =  >  {a}^{2}   - 4 {a}^{2}  {d}^{2}  -  {b}^{2}  - 4 {b}^{2}  {c}^{2}  -  {c}^{2}  +  {d}^{2}  + 8adbc

 =  > ( {a}^{2}  - 4 {a}^{2} ) {d}^{2}  - ( {b}^{2}  + 4 {b}^{2} ) {c}^{2}  -  {c}^{2}  +  {d}^{2}  + 8adbc

 =  > ( - 3 {a}^{2} ) {d}^{2}  - (5 {b}^{2} ) {c}^{2}  - ( - c - d + 8ab)cd

 \bold{=  > ( - 3 {a}^{2} ) {d}^{2}  - ( 5{b}^{2} ) {c}^{2}  - (8ab - c - d)cd}

\bold\fcolorbox{aqua}{orange}{Answer}

 \bold{( - 3 {a}^{2} ) {d}^{2}  - ( 5{b}^{2} ) {c}^{2}  - (8ab - c - d)cd}

Similar questions