Math, asked by sanisingh90, 10 months ago

Factorisation of middle terms:10_3x_x^2​

Answers

Answered by Anonymous
19

Given equation :

  • 10 - 3x - x²

To Find :

  • Values of x using middle term factorization.

Solution :

To solve any quadratic equation, it should first be brought to its general form.

General form :

  • ax² + bx + c = 0

We can clearly see that the given equation is not in general form.

General form of the given equation :

  • - 3x - 10 = 0

Now, let's find the zeroes of the equation.

\mathtt{x^2\:-3x-10=0}

\mathtt{x^2\:-5x+2x-10=0}

\mathtt{x(x-5)\:+2(x-5) =0}

\mathtt{(x-5)\:\:(x+2)=0}

\mathtt{x-5=0\:\:or\:\:x+2=0}

\mathtt{x=5\:\:or\:\:x=-2}

\large{\boxed{\rm{\red{Roots\:of\:the\:equation\:are\::5,-2}}}}


StarrySoul: Ati Uttam! xD
Answered by Anonymous
24

   \huge\boxed{\bf{Question :-}}

Factorisation of middle term :- 10 x – 3 x – x²

 \huge {\boxed{\bf{Solution :-}}}

 \bf \red{We \: have \: to \: find,}

 \star \rm \: By \: using \:  \red{Middle \: Term \: Factorisation}, \: we \: have  \\ \rm to \: find \: the \: value \: of \:  \red{x}.

  \boxed{\dag  \: \bf \green{  Remark}}

For solving any type of quadratic equation, we have to brought it on it's Standard form. But we can see the given equation is not in standard form.

 \bf \red{Standard \: Form \: of \: any \: quadratic \: equation :  - }

 \boxed{ \longrightarrow \:   \:  \:  \:  \:  \:  \:  \: \rm \: ax {}^{2}  + bx + c = 0 \: }

 \bf \red{Standard \: Form \: of \: the \: given \: Quadratic \: Equation : -  }

 \boxed{ \longrightarrow \:  \:  \:  \:  \:  \:  \:  \rm \: x {}^{2}  - 3x - 10 = 0 \: }

Now, we have to find the zeroes of the given quadratic equation :-

 \rm \: We \: will \: find \: the \: zeroes \: by \: the \: form \: given \: form :-\\  \longrightarrow \:  \bf \red{ax {}^{2}  + bx + c = 0 \: }

 \rm \: Let's \: find,

 \boxed {\rightarrow \:  \:  \:  \:  \:  \rm \: x {}^{2}  - 3x - 10 = 0 \: }

  \boxed{\rightarrow \:  \:  \:  \:  \:  \rm  \: x {}^{2}  - 5x + 2x - 10 = 0 \: }

 \boxed{ \rightarrow \:  \:  \:  \:  \:  \rm \: x(x - 5) + 2(x - 5) = 0 \: }

  \boxed{\rightarrow \:  \:  \:  \:  \:  \rm \: (x - 5) \: (x + 2) = 0 \: }

 \boxed{ \rightarrow \:  \:  \:  \:  \:  \rm \: x - 5 = 0 \:  \red{or} \: x + 2 = 0 \: }

 \boxed{ \rightarrow \:  \:  \:  \:  \:  \rm \: x = 5 \:  \red{or} \: x = -2 \: }

 \rm \: Hence, \: the \: roots \: of \: the \: given \: equation \:are \:  \:  \red{5 , \: - 2}


StarrySoul: Nice use of LaTex! :D
Similar questions