Factorisation -
Please solve the above.
Answers
Answer:
Factorisation -
Please solve the above. not simple please brainliest answers
Solutions!!
(1)
x² - 4y²
= x² - 2²y²
= (x)² - (2y)²
Use a² - b² = (a - b)(a + b).
= (x - 2y)(x + 2y)
(2)
9a²x² - 9b³
= 9(ax)² - 9b³
= 9((ax)² - b³)
(3)
(a²/9) - (b⁴/16)
= (16a² - 9b⁴)/144
= (1/144)(16a² - 9b⁴)
= (1/144)((4a)² - (3b²)²)
Use a² - b² = (a - b)(a + b).
= (1/144)(4a - 3b²)(4a + 3b²)
(4)
48x³ - 27x
= 3x(16x² - 9)
= 3x((4x)² - (3)²)
Use a² - b² = (a - b)(a + b).
= 3x(4x - 3)(4x + 3)
(5)
4a²b - 9b²
= b(4a² - 9b)
(6)
a² -81(b - c)²
Use a² - b² = (a - b)(a + b).
= (a - 9(b - c))(a + 9(b - c))
= (a - 9b + 9c)(a + 9b - 9c)
(7)
a⁴ - 1
Use a² - b² = (a - b)(a + b).
= (a² - 1)(a² + 1)
Use a² - b² = (a - b)(a + b).
= (a - 1)(a + 1)(a² + 1)
(8)
9a² - (a² - 4)²
Use a² - b² = (a - b)(a + b).
= (3a - (a² - 4))(3a + (a² - 4))
= (3a - a² + 4)(3a + a² - 4)
= (-a² + 3a + 4)(a² + 3a - 4)
= (-a² + 4a - a + 4)(a² + 4a - a - 4)
= (-a(a - 4) - (a - 4))(a(a + 4) - (a + 4))
= (-(a - 4)(a + 1))(a + 4)(a - 1)
= -(a - 4)(a + 1)(a + 4)(a - 1)
(9)
2x⁴ - 32
= 2(x⁴ - 16)
= 2((x²)² - (4)²)
Use a² - b² = (a - b)(a + b).
= 2(x² - 4)(x² + 4)
Use a² - b² = (a - b)(a + b).
= 2(x - 2)(x + 2)(x² + 4)
(10)
16x² - y² + 4yz - 4z²
= 16x² - (y² - 4yz + 4z²)
Use a² - 2ab + b² = (a - b)².
= 16x² - (y - 2z)²
Use a² - b² = (a - b)(a + b).
= (4x - (y - 2z))(4x + (y - 2z))
= (4x - y + 2z)(4x + y - 2z)