Factorisation
\tt \: 9(2x + 3y) + 12(2x + 3y)(2x - 3y) + 4(2x - 3y)^{2}9(2x+3y)+12(2x+3y)(2x−3y)+4(2x−3y)
2
Answers
Answer:
9×5=45
3/6=3/5
12x+3y=45
78=56
Step-by-step explanation:
STEP
1
:
Equation at the end of step 1
((9•((2x-3y)2))-((12•(2x-3y))•(2x+3y)))+4•(2x+3y)2
STEP
2
:
Equation at the end of step 2
((9•((2x-3y)2))-(12•(2x-3y)•(2x+3y)))+4•(2x+3y)2
STEP
3
:
Equation at the end of step 3
((9•((2x-3y)2))-12•(2x-3y)•(2x+3y))+4•(2x+3y)2
STEP
4
:
Equation at the end of step 4
(9•(2x-3y)2-12•(2x-3y)•(2x+3y))+4•(2x+3y)2
STEP
5
:
5.1 Evaluate : (2x+3y)2 = 4x2+12xy+9y2
Trying to factor a multi variable polynomial :
5.2 Factoring 4x2 - 60xy + 225y2
Try to factor this multi-variable trinomial using trial and error
Found a factorization : (2x - 15y)•(2x - 15y)
Detecting a perfect square :
5.3 4x2 -60xy +225y2 is a perfect square
It factors into (2x-15y)•(2x-15y)
which is another way of writing (2x-15y)2
How to recognize a perfect square trinomial:
• It has three terms
• Two of its terms are perfect squares themselves
• The remaining term is twice the product of the square roots of the other two terms
Final result :
(2x - 15y)2