Math, asked by Anonymous, 3 months ago

Factorisation

\tt \: 9(2x + 3y) + 12(2x + 3y)(2x - 3y) + 4(2x - 3y)^{2}9(2x+3y)+12(2x+3y)(2x−3y)+4(2x−3y)
2

Answers

Answered by SouvikGhosh2004
1

Answer:

9×5=45

3/6=3/5

12x+3y=45

78=56

Answered by inderpreet2605singh
1

Step-by-step explanation:

STEP

1

:

Equation at the end of step 1

((9•((2x-3y)2))-((12•(2x-3y))•(2x+3y)))+4•(2x+3y)2

STEP

2

:

Equation at the end of step 2

((9•((2x-3y)2))-(12•(2x-3y)•(2x+3y)))+4•(2x+3y)2

STEP

3

:

Equation at the end of step 3

((9•((2x-3y)2))-12•(2x-3y)•(2x+3y))+4•(2x+3y)2

STEP

4

:

Equation at the end of step 4

(9•(2x-3y)2-12•(2x-3y)•(2x+3y))+4•(2x+3y)2

STEP

5

:

5.1 Evaluate : (2x+3y)2 = 4x2+12xy+9y2

Trying to factor a multi variable polynomial :

5.2 Factoring 4x2 - 60xy + 225y2

Try to factor this multi-variable trinomial using trial and error

Found a factorization : (2x - 15y)•(2x - 15y)

Detecting a perfect square :

5.3 4x2 -60xy +225y2 is a perfect square

It factors into (2x-15y)•(2x-15y)

which is another way of writing (2x-15y)2

How to recognize a perfect square trinomial:

• It has three terms

• Two of its terms are perfect squares themselves

• The remaining term is twice the product of the square roots of the other two terms

Final result :

(2x - 15y)2

Similar questions