Math, asked by Anupam9240, 1 year ago

factorise 1/16x2+1/4y2+1-1/4xy-y+1/2x

Answers

Answered by MaheswariS
6

\textbf{Given:}

\mathsf{\dfrac{1}{16x^2}+\dfrac{1}{4y^2}+1-\dfrac{1}{4xy}-y+\dfrac{1}{2x}}

\textbf{To factorize:}

\mathsf{\dfrac{1}{16x^2}+\dfrac{1}{4y^2}+1-\dfrac{1}{4xy}-y+\dfrac{1}{2x}}

\textbf{Solution:}

\textsf{Consider,}

\mathsf{\dfrac{1}{16x^2}+\dfrac{1}{4y^2}+1-\dfrac{1}{4xy}-y+\dfrac{1}{2x}}

\textsf{This can be written as}

\mathsf{=\left(\dfrac{1}{4x}\right)^2+\left(\dfrac{1}{2y}\right)^2+1^2-2\left(\dfrac{1}{4x}\right)\left(\dfrac{1}{2y}\right)-2\left(\dfrac{1}{2y}\right)(1)+2(1)\left(\dfrac{1}{4x}\right)}

\textsf{Using the identity,}

\boxed{\mathsf{(a+b+c)^2=a^2+b^2+c^2+2ab+2bc+2ca}}

\mathsf{=\left(\dfrac{1}{4x}-\dfrac{1}{2y}+1\right)^2}

\implies\boxed{\mathsf{\dfrac{1}{16x^2}+\dfrac{1}{4y^2}+1-\dfrac{1}{4xy}-y+\dfrac{1}{2x}=\left(\dfrac{1}{4x}-\dfrac{1}{2y}+1\right)\left(\dfrac{1}{4x}-\dfrac{1}{2y}+1\right)}}

\textbf{Find more:}

1.X2-(a-1/a)x+1 factorise the following  

https://brainly.in/question/4301404#  

2.Factorise x^4-(x-z)^4​  

https://brainly.in/question/14993176#

Answered by barani79530
2

Step-by-step explanation:

please mark as best answer and thank

Attachments:
Similar questions